cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141353 a(n) = Catalan(n) + 2^n - 0^n.

Original entry on oeis.org

1, 3, 6, 13, 30, 74, 196, 557, 1686, 5374, 17820, 60834, 212108, 751092, 2690824, 9727613, 35423206, 129775862, 477900844, 1767787478, 6565168996, 24468364172, 91486757944, 343068002258, 1289920924540, 4861979955884
Offset: 0

Views

Author

Paul Barry, Jun 27 2008

Keywords

Comments

Hankel transform is A141354.

Crossrefs

Cf. A000108 (Catalan numbers), A141351.

Programs

  • Mathematica
    f[n_] := Binomial[2n, n]/(n + 1) + 2^n - 0^n; f[0] = 1; Array[f, 29, 0] (* or *)
    CoefficientList[ Series[1 + 1/2 (-4 + 2/(1 - 2x) + (1 - Sqrt[1 - 4x])/x), {x, 0, 28}], x] (* Robert G. Wilson v, Mar 18 2018 *)
  • PARI
    a(n) = binomial(2*n,n)/(n+1) + 2^n - 0^n; \\ Michel Marcus, Mar 18 2018

Formula

G.f.: c(x)+2x/(1-2x), where c(x) is the g.f. of A000108. [corrected by Paul Barry, Oct 18 2010]
Conjecture: (n+1)*a(n) + 2*(-4*n+1)*a(n-1) + 4*(5*n-7)*a(n-2) + 8*(-2*n+5)*a(n-3) = 0. - R. J. Mathar, Nov 15 2012