A141384 Trace of the n-th power of a certain 8X8 adjacency matrix.
8, 8, 32, 158, 828, 4408, 23564, 126106, 675076, 3614144, 19349432, 103593806, 554625900, 2969386480, 15897666068, 85113810058, 455687062276, 2439682811480, 13061709929936, 69930511268510, 374397872321628
Offset: 0
Examples
a(0) = 8 because the trace of the order-8 identity matrix is 8. a(1) = 8 because all diagonal elements of the adjacency matrix are 1 (there's a loop at each vertex).
Links
- Max A. Alekseyev, Gérard P. Michon, Making Walks Count: From Silent Circles to Hamiltonian Cycles, arXiv:1602.01396 [math.CO], 2016.
- G. P. Michon, A screaming game for short-sighted people.
- G. P. Michon, Silent circles, enumerated by Max Alekseyev.
- G. P. Michon, Brocoum's Screaming Circles.
- Index entries for linear recurrences with constant coefficients, signature (8,-16,10,-1).
Crossrefs
Cf. A141221.
Formula
For n>=5, a(n) = 8*a(n-1)-16*a(n-2)+10*a(n-3)-a(n-4).
For positive values of n: a(n) = (5.3538557854308)^n + (1.5235479602692)^n + 1 + (0.1225962542999)^n. The dominant term in the above is the n-th power of (7+2*sqrt(22)*cos(atan(sqrt(5319)/73)/3))/3.
G.f.: 2*(4-28*x+48*x^2-25*x^3+2*x^4)/((1-x)*(1-7*x+9*x^2-x^3)). [Colin Barker, Jan 20 2012]
Extensions
Edited by Max Alekseyev, Aug 03 2015
Comments