cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A233808 Autosequence preceding A198631(n)/A006519(n+1). Numerators.

Original entry on oeis.org

0, 0, 1, 3, 3, 5, 5, 7, 7, -3, -3, 121, 121, -1261, -1261, 20583, 20583, -888403, -888403, 24729925, 24729925, -862992399, -862992399, 36913939769, 36913939769, -1899853421885, -1899853421885
Offset: 0

Views

Author

Paul Curtz, Dec 16 2013

Keywords

Comments

The fractions are g(n)=0, 0, 1, 3/2, 3/2, 5/4, 5/4, 7/4, 7/4, -3/8, -3/8, 121/8, 121/8, -1261/8, -1261/8, 20583/8, 20583/8, -888403/16, -888403/16,... . The denominators are 1, 1, followed by A053644(n+1).
g(n+2) - g(n+1) = A198631(n)/A006519(n+1).
The corresponding fractions to g(n) are f(n) in A165142(n).
g(n) differences table:
0, 0, 1, 3/2, 3/2, 5/4,
0, 1, 1/2, 0, -1/4, 0,
1, -1/2, -1/2, -1/4, 1/4, 1/2, Euler twin numbers (new),
-3/2, 0, 1/4, 1/2, 1/4, -1,
3/2, 1/4, 1/4, -1/4, -5/4, -5/8,
-5/4, 0, -1/2, -1, 5/8, 13/2, etc.
Like A198631(n)/A006519(n+1),g(n) is an autosequence of the second kind.
If we proceed, here for Euler polynomials, like in A233565 for Bernoulli polynomials, we obtain
1) A133138(n)/A007395(n) (unreduced form) or
2) A233508(n)/A232628(n) (reduced form),the first array in A133135.
The Bernoulli's corresponding fractions to 1) are A193815(n)/(A003056(n) with 1 instead of 0).

Crossrefs

Cf. A051716/A051717, Bernoulli twin numbers.

Programs

  • Mathematica
    max = 27; p[0] = 1; p[n_] := (1 + x)*((1 + x)^(n - 1) + x^(n - 1))/2; t = Table[Coefficient[p[n], x, k], {n, 0, max + 2}, {k, 0, max + 2}]; a[n_] := (-1)^n*Inverse[t][[n, 2]] // Numerator; a[0] = 0; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Jan 11 2016 *)

Formula

a(n) = 0, 0, followed by (-1)^n *A141424(n).

A238235 Numerators of Euler twin numbers Et(n).

Original entry on oeis.org

1, -1, -1, -1, 1, 1, -1, -17, 17, 31, -31, -691, 691, 5461, -5461, -929569, 929569, 3202291, -3202291, -221930581, 221930581, 4722116521, -4722116521, -968383680827, 968383680827, 14717667114151, -14717667114151
Offset: 0

Views

Author

Paul Curtz, Feb 20 2014

Keywords

Comments

Et(n) = 1, -1/2, -1/2, -1/4, 1/4, 1/2, -1/2, -17/8, 17/8, 31/2, -31/2, -691/4, 691/4, 5461/2, -5461/2,... =a(n)/b(n) is mentioned in A233808.
Denominators: b(n)= 1, 2, 2, 4, 4, 2, 2, 8, 8,... = A065176(n) with 1 instead of 0.
Et(n) is the first difference of 0, followed by A198631(n)/A006519(n+1).
Et(n+2) = -1/2, -1/4, 1/4, 1/2,... is an autosequence of the second kind. Its main diagonal is the double of the following diagonal, the inverse binomial transform of Et(n+2) being Et(n+2) signed.
The denominators of the difference table of Et(n+2) are even numbers of the form 2^p. For the Bernoulli twin numbers A051716(n+1)/A051717(n+2), the denominators of the difference table, A168426(n), are multiples of 3.

Crossrefs

Cf. A051716/A051717 (Bernoulli twin numbers).

Programs

  • Mathematica
    Join[{1, -1, -1}, Table[{nu = Numerator[EulerE[2*n+1, 1]], -nu}, {n, 1, 12}]] // Flatten (* Jean-François Alcover, Feb 24 2014 *)

Formula

Binomial transform of A141424(n)/(A053644(n) with 1 instead of 0).
a(2n+3) = (-1)^n*A002425(n+2) = -a(2n+4).
Showing 1-2 of 2 results.