cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A305834 Triangle read by rows: T(0,0)= 1; T(n,k)= T(n-1,k) + 4*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 4, 1, 8, 1, 12, 16, 1, 16, 48, 1, 20, 96, 64, 1, 24, 160, 256, 1, 28, 240, 640, 256, 1, 32, 336, 1280, 1280, 1, 36, 448, 2240, 3840, 1024, 1, 40, 576, 3584, 8960, 6144, 1, 44, 720, 5376, 17920, 21504, 4096
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013611 ((1+4*x)^n).
The coefficients in the expansion of 1/(1-x-4*x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.5615528128...: A222132 (sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... ))))), when n approaches infinity.

Examples

			Triangle begins:
1;
1;
1,  4;
1,  8;
1, 12,   16;
1, 16,   48;
1, 20,   96,    64;
1, 24,  160,   256;
1, 28,  240,   640,    256;
1, 32,  336,  1280,   1280;
1, 36,  448,  2240,   3840,   1024;
1, 40,  576,  3584,   8960,   6144;
1, 44,  720,  5376,  17920,  21504,    4096;
1, 48,  880,  7680,  32256,  57344,   28672;
1, 52, 1056, 10560,  53760, 129024,  114688,   16384;
1, 56, 1248, 14080,  84480, 258048,  344064,  131072;
1, 60, 1456, 18304, 126720, 473088,  860160,  589824,  65536;
1, 64, 1680, 23296, 183040, 811008, 1892352, 1966080, 589824;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 371, 372.

Crossrefs

Row sums give A006131.
Cf. A000012 (column 0), A008586 (column 1), A035008 (column 2), A141478 (column 3), A120054 (column 4).
Cf. A013611.
Cf. A222132.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 4 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1/(1 - t*x - 4*t^2).
Column k is binomial (n + k - 1, k) * 4^k.
Showing 1-1 of 1 results.