cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141533 The first subdiagonal of the array of A141425 and its higher order differences.

Original entry on oeis.org

1, -1, -2, 23, 28, -7, 22, 251, 376, 149, 658, 3143, 5188, 4913, 13102, 42611, 75376, 101549, 232618, 612863, 1137148, 1831433, 3928582, 9185771, 17574376, 31162949, 64717378, 141392183, 275609908, 515347553, 1052218462, 2212053731, 4359537376, 8396224349
Offset: 1

Views

Author

Paul Curtz, Aug 12 2008

Keywords

Examples

			A141425 and its first, second, third differences etc. in followup rows define an array T(n,m):
..1...2...4...5...7...8...1...2...4...5...
..1...2...1...2...1..-7...1...2...1...2...
..1..-1...1..-1..-8...8...1..-1...1..-1...
.-2...2..-2..-7..16..-7..-2...2..-2..-7...
..4..-4..-5..23.-23...5...4..-4..-5..23...
.-8..-1..28.-46..28..-1..-8..-1..28.-46...
..7..29.-74..74.-29..-7...7..29.-74..74...
.22.-103.148.-103..22..14..22.-103.148.-103...
-125.251.-251.125..-8...8.-125.251.-251.125...
376.-502.376.-133..16.-133.376.-502.376.-133...
Then a(n) = T(n+1,n) .
		

Formula

a(2*n)+a(2*n+1)= 0, 21, 21, 273, 525, 3801,... (multiples of 21).
a(n)= +a(n-1) -a(n-2) +3*a(n-3) +6*a(n-4). G.f.: x*(1-2*x+21*x^3)/((1-2*x) * (1+x) * (3*x^2+1)). [R. J. Mathar, Nov 22 2009]
a(n)= (3*(-1)^n+2^n-A128019(n+1))/2. [R. J. Mathar, Nov 22 2009]

Extensions

Edited and extended by R. J. Mathar, Nov 22 2009