A141684 Triangle read by rows formed from Euler polynomials: p(x,n) = if(n mod 2 = 1, 2^(1 + ((n - 1)/2))*EulerE(n, x), EulerE(n, x)); t(n,m) = Coefficients(p(x,n)).
1, -1, 2, 0, -1, 1, 1, 0, -6, 4, 0, 1, 0, -2, 1, -4, 0, 20, 0, -20, 8, 0, -3, 0, 5, 0, -3, 1, 34, 0, -168, 0, 140, 0, -56, 16, 0, 17, 0, -28, 0, 14, 0, -4, 1, -496, 0, 2448, 0, -2016, 0, 672, 0, -144, 32, 0, -155, 0, 255, 0, -126, 0, 30, 0, -5, 1
Offset: 1
Examples
{ 1}, { -1, 2}, { 0, -1, 1}, { 1, 0, -6, 4}, { 0, 1, 0, -2, 1}, { -4, 0, 20, 0, -20, 8}, { 0, -3, 0, 5, 0, -3, 1}, { 34, 0, -168, 0, 140, 0, -56, 16}, { 0, 17, 0, -28, 0, 14, 0, -4, 1}, {-496, 0, 2448, 0, -2016, 0, 672, 0, -144, 32}, { 0, -155, 0, 255, 0, -126, 0, 30, 0, -5, 1}
Links
- G. C. Greubel, Rows n=1..100 of triangle, flattened
Programs
-
Mathematica
T[x_, n_] := If[Mod[n, 2] == 1, 2^(1 + ((n - 1)/2))*EulerE[n, x], EulerE[n, x]]; Table[Expand[T[x, n]], {n, 0, 10}]; Table[CoefficientList[T[x, n], x], {n, 0, 10}]; Flatten[%]
Extensions
Edited by N. J. A. Sloane, Jan 06 2009
Comments