cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141689 Average of Eulerian numbers (A008292) and Pascal's triangle (A007318): t(n,m) = (A008292(n,m) + A007318(n,m))/2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 36, 15, 1, 1, 31, 156, 156, 31, 1, 1, 63, 603, 1218, 603, 63, 1, 1, 127, 2157, 7827, 7827, 2157, 127, 1, 1, 255, 7318, 44145, 78130, 44145, 7318, 255, 1, 1, 511, 23938, 227638, 655240, 655240, 227638, 23938, 511, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 09 2008

Keywords

Comments

Row sums are: {1, 2, 5, 16, 68, 376, 2552, 20224, 181568, 1814656, ...}.
If Pascal's triangle and the Eulerian numbers are both fundamental arrays, then there should be a combinatorial set "between" them.

Examples

			{1},
{1, 1},
{1, 3, 1},
{1, 7, 7, 1},
{1, 15, 36, 15, 1},
{1, 31, 156, 156, 31, 1},
{1, 63, 603, 1218, 603, 63, 1},
{1, 127, 2157, 7827, 7827, 2157, 127, 1},
{1, 255, 7318, 44145, 78130, 44145, 7318, 255, 1},
{1, 511, 23938, 227638, 655240, 655240, 227638, 23938, 511, 1}
		

Crossrefs

Programs

  • Mathematica
    Table[Table[(Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}] + Binomial[n - 1, k])/2, {k, 0, n - 1}], {n, 1, 10}]; Flatten[%]

Extensions

Edited by N. J. A. Sloane, Dec 13 2008