cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A157632 Triangle T(n,m) read by rows: 1 in column m=0 and on the diagonal, else 3*n*m*(n-m).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 18, 18, 1, 1, 36, 48, 36, 1, 1, 60, 90, 90, 60, 1, 1, 90, 144, 162, 144, 90, 1, 1, 126, 210, 252, 252, 210, 126, 1, 1, 168, 288, 360, 384, 360, 288, 168, 1, 1, 216, 378, 486, 540, 540, 486, 378, 216, 1, 1, 270, 480, 630, 720, 750, 720, 630, 480, 270, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 03 2009

Keywords

Comments

Row sums are {1, 2, 8, 38, 122, 302, 632, 1178, 2018, 3242, 4952,...}.

Examples

			{1},
{1, 1},
{1, 6, 1},
{1, 18, 18, 1},
{1, 36, 48, 36, 1},
{1, 60, 90, 90, 60, 1},
{1, 90, 144, 162, 144, 90, 1},
{1, 126, 210, 252, 252, 210, 126, 1},
{1, 168, 288, 360, 384, 360, 288, 168, 1},
{1, 216, 378, 486, 540, 540, 486, 378, 216, 1},
{1, 270, 480, 630, 720, 750, 720, 630, 480, 270, 1}
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] = If[n*m*(n - m) == 0, 1, n^3 - (m^3 + (n - m)^3)];
    Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

T(n,m)= 1 if m=0 or n=m, else n^3-m^3-(n - m)^3 = 3*n*m*(n-m) =3*A157635(n,m).
Row sums: 2+A083374(n), n>0. - R. J. Mathar, Apr 10 2009

Extensions

Edited by the Associate Editors of the OEIS, Apr 10 2009
Showing 1-1 of 1 results.