A141727 Triangle T(n,k) read by rows. Entries are 0 and 1. Start with 1 in the top row, add a second row of 2n-1 elements (with n=2 -> 3). Moving from left to right add 0 if the number of adjacent 1's is even or add 1 if it is odd.
1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0
Offset: 0
Examples
.....................................1 First Row ...................................1 ... Add 1 to have an even number of adjacent 1's (2) .....................................1 First Row ...................................1.0 ... Add 0 because there are two adjacent 1's (in the first and second rows) ......................................1 First Row ....................................1.0.1 ... Again add 1 to have an even number of adjacent 1's (2) The second row is now complete. .....................................1 First Row ...................................1.0.1 Second Row .................................1 ... Add 1 because there is only an 1 adjacent (second row) .....................................1 First Row ...................................1.0.1 Second Row .................................1.0 ... Add 0 because there are two 1's adjacent (second and third row) .....................................1 First Row ...................................1.0.1 Second Row .................................1.0.0 ... Again add 0 because there are two 1's adjacent (second row) .....................................1 First Row ...................................1.0.1 Second Row .................................1.0.0.1 ... Add 1 because there is only an 1 adjacent (second row) .....................................1 First Row ...................................1.0.1 Second Row .................................1.0.0.1.0 ... Add 0 because there are two 1's adjacent (second and third row) The third row is now complete. Then repeat the process for the other rows. The triangle begins: ...........................1 ........................1..0..1 .....................1..0..0..1..0 ..................1..0..1..0..1..0..0 ...............1..0..0..1..1..0..1..1..1 ............1..0..1..0..0..0..0..0..1..1..0 .........1..0..0..1..0..0..0..0..1..1..1..0..0 ......1..0..1..0..1..0..0..0..1..1..0..0..1..1..1 ...1..0..0..1..1..0..1..1..0..0..0..1..0..0..1..1..0 1..0..1..0..0..0..0..0..0..1..1..0..1..0..1..1..1..0..0
Links
- Paolo P. Lava, Picture of Triangle A141727
Extensions
Minor edits by N. J. A. Sloane, Sep 10 2012
Comments