cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141751 Triangle, read by rows, where T(n,k) = [T(n-1,k-1)*T(n-1,k) + 1]/T(n-2,k-1) for 0=0 and T(n,0) = Fibonacci(2*n-1) for n>=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 13, 13, 8, 4, 1, 34, 34, 21, 11, 5, 1, 89, 89, 55, 29, 14, 6, 1, 233, 233, 144, 76, 37, 17, 7, 1, 610, 610, 377, 199, 97, 45, 20, 8, 1, 1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1, 4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 04 2008

Keywords

Examples

			Generating rule.
Given nonzero elements W, X, Y, Z, relatively arranged like so:
.. W .....
.. X Y ...
.... Z ...
then Z = (X*Y + 1)/W.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
13, 13, 8, 4, 1;
34, 34, 21, 11, 5, 1;
89, 89, 55, 29, 14, 6, 1;
233, 233, 144, 76, 37, 17, 7, 1;
610, 610, 377, 199, 97, 45, 20, 8, 1;
1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1;
4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n
    				
  • PARI
    T(n,k)=fibonacci(2*(n-k))*k+fibonacci(2*(n-k)-1)
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

T(n,k) = Fibonacci(2*(n-k)-1) + k*Fibonacci(2*(n-k)) for 0<=k<=n.