A141777 Primes of the form -3*x^2 + 4*x*y + 6*y^2 (as well as of the form 7*x^2 + 12*x*y + 2*y^2).
2, 7, 13, 29, 61, 79, 101, 109, 127, 149, 151, 167, 173, 197, 239, 263, 271, 277, 293, 349, 359, 373, 431, 439, 461, 479, 503, 541, 557, 607, 613, 677, 701, 733, 743, 821, 853, 877, 887, 919, 941, 967, 997, 1031, 1063, 1069, 1117, 1151, 1223, 1229, 1231
Offset: 1
Keywords
Examples
a(2) = 7 because we can write 7 = -3*1^2 + 4*1*1 + 6*1^2 (= 7*1^2 + 12*1*0 + 2*0^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Cf. A141776 (d=88).
Extensions
More terms from Colin Barker, Apr 05 2015
Comments