cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141812 RMS values of the RMS numbers: a(n) is the root mean square of the divisors of A140480(n).

Original entry on oeis.org

1, 5, 29, 169, 145, 845, 1105, 2405, 3445, 4901, 2665, 5525, 9425, 12325, 12025, 17225, 24505, 13325, 32045, 55205, 47125, 61625, 69745, 101065, 99905, 77285, 124501, 160225, 186745, 204425, 239425, 160225, 273325, 276025, 292825, 226525, 446165, 456025
Offset: 1

Views

Author

Andrew Weimholt, Jul 07 2008

Keywords

Comments

Those numbers seem to be congruent to 0,1,-1 mod 5. - Ctibor O. Zizka, Sep 23 2008
No, the first terms congruent to 2 and 3 mod 5 are a(461) = 247511537 and a(1603) = 7177834573, respectively. - Giovanni Resta, Oct 29 2019

Examples

			a(5)=145, because A140480(5)=287, with divisors 1,7,41,287 and RMS(1,7,41,287) = 145.
		

Crossrefs

Programs

  • Mathematica
    rmsQ[n_] := IntegerQ[Sqrt[DivisorSigma[2, n]/DivisorSigma[0, n]]]; Reap[ For[k=1; n=1, k<10^7, k++, If[rmsQ[k], an = Sqrt[Mean[Divisors[k]^2]]; Print["k = ", k, " a(", n++, ") = ", an]; Sow[an]]]][[2, 1]] (* Jean-François Alcover, Dec 04 2015 *)
  • PARI
    for(n=1,1e6,if(issquare(sumdiv(n,d,d^2)/numdiv(n),&s) && denominator(s)==1,print1(s", "))) \\ Charles R Greathouse IV, Mar 08 2013