A140480
RMS numbers: numbers n such that root mean square of divisors of n is an integer.
Original entry on oeis.org
1, 7, 41, 239, 287, 1673, 3055, 6665, 9545, 9799, 9855, 21385, 26095, 34697, 46655, 66815, 68593, 68985, 125255, 155287, 182665, 242879, 273265, 380511, 391345, 404055, 421655, 627215, 730145, 814463, 823537, 876785, 1069895, 1087009, 1166399, 1204281, 1256489
Offset: 1
- Giovanni Resta, Table of n, a(n) for n = 1..7430 (terms < 10^13, first 455 terms from T. D. Noe, terms 456..1660 from Donovan Johnson)
- A. S. Fraenkel, Heap games, numeration systems and sequences, arXiv:math/9809074 [math.CO], 1998; Annals of Combinatorics, 2 (1998), 197-210.
- Aviezri S. Fraenkel, On the recurrence f(m+1)= b(m)*f(m)-f(m-1) and applications, Discrete Mathematics 224 (2000), pp. 273-279.
- H. W. Lenstra Jr., Solving the Pell Equation, Notices of the AMS, Vol.49, No.2, Feb. 2002, p.182-192. [_Ctibor O. Zizka_, Aug 30 2008]
- Eric Weisstein's World of Math, Root Mean Square
Cf.
A002315,
A001653,
A001834,
A001835,
A001599,
A000005,
A000040,
A003601,
A010052,
A001157,
A020486,
A158294,
A224988.
-
a140480 n = a140480_list !! (n-1)
a140480_list = filter
((== 1) . a010052 . (\x -> a001157 x `div` a000005 x)) a020486_list
-- Reinhard Zumkeller, Jan 15 2013
-
rmsQ[n_] := IntegerQ[Sqrt[DivisorSigma[2, n]/DivisorSigma[0, n]]]; m = 160000; sel1 = Select[8*Range[0, m]+1, rmsQ]; sel7 = Select[8*Range[m]-1, rmsQ]; Union[sel1, sel7] (* Jean-François Alcover, Aug 31 2011, after T. D. Noe's comment *)
Select[Range[1300000],IntegerQ[RootMeanSquare[Divisors[#]]]&] (* Harvey P. Dale, Mar 24 2016 *)
A141813
Primitive RMS numbers: RMS numbers which are not the product of two smaller RMS numbers.
Original entry on oeis.org
1, 7, 41, 239, 3055, 6665, 9545, 9855, 26095, 34697, 155287, 380511, 421655, 627215, 814463, 823537, 1166399, 1204281, 1256489, 1289441, 1815073, 2265353, 2544697, 2627343, 3132935, 3188809, 3762639, 4647985, 4730879, 4963127, 4995569, 5054015, 5143945
Offset: 1
The RMS Number 287 is not in the sequence because 287=7*41 and both 7 and 41 are RMS numbers.
A141814
RMS values of the Primitive RMS numbers: a(n) is the Root Mean Square of the divisors of A141813(n).
Original entry on oeis.org
1, 5, 29, 169, 1105, 2405, 3445, 2665, 9425, 12325, 55205, 101065, 124501, 160225, 204425, 239425, 292825, 226525, 446165, 456025, 456025, 801125, 637325, 493025, 801125, 801125, 706225, 1185665, 1185665, 1759925, 1770305, 1291225, 1313845, 1185665, 1743625
Offset: 1
a(5)=1105, because A141813(5)=3055, with divisors 1,5,13,47,65,235,611,3055 and RMS(1,5,13,47,65,235,611,3055) = 1105.
A141815
RMS numbers with non-unique RMS values.
Original entry on oeis.org
627215, 876785, 1289441, 1815073, 2265353, 3132935, 3188809, 4390505, 4647985, 4730879, 6542705, 9026087, 11369969, 12705511, 15203889, 15857471, 17888153, 18253913, 18578719, 20871649, 21026655, 21930545, 22321663, 23630711
Offset: 1
627215 is an RMS Number with an RMS value of 160225.
876785 is an RMS Number with an RMS value of 160225.
Since these two RMS numbers have the same RMS value, their RMS values are non-unique and therefore they belong to the sequence.
A141816
RMS values of the RMS numbers with non-unique RMS values: a(n) is the Root Mean Square of the divisors of A141815(n).
Original entry on oeis.org
160225, 160225, 456025, 456025, 801125, 801125, 801125, 801125, 1185665, 1185665, 1185665, 2280125, 4032145, 2280125, 4032145, 4005625, 6326125, 6456125, 6569225, 5226065, 4032145, 4005625, 4005625, 5928325, 6326125
Offset: 1
a(1)=160225, because A141815(1)=627215 and the Root Mean Square of the divisors of 627215 is 160225.
A327055
Numbers m such that the arithmetic mean and the quadratic mean (the root mean square) of the divisors of m are both integers.
Original entry on oeis.org
1, 7, 41, 239, 287, 1673, 3055, 6665, 9545, 9799, 9855, 21385, 26095, 34697, 46655, 66815, 68593, 68985, 125255, 155287, 182665, 242879, 273265, 380511, 391345, 404055, 421655, 627215, 730145, 814463, 823537, 876785, 1069895, 1087009, 1166399, 1204281, 1256489
Offset: 1
Number 41 is a term because sigma(41) / tau(41) = 42 / 2 = 21 and sqrt((1^2 + 41^2) / tau(41) ) = sqrt(1682 / 2) = 29.
Values of means of the first RMS number 2217231104 that is not in the sequence: 418652080/9 (noninteger) and 247511537 (integer).
-
[m: m in [1..10^6] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(Sqrt(&+[d^2: d in Divisors(m)] / NumberOfDivisors(m)))]
-
aQ[n_] := IntegerQ[DivisorSigma[1, n]/(d = DivisorSigma[0, n])] && IntegerQ @ Sqrt[DivisorSigma[2, n]/d]; Select[Range[10^5], aQ] (* Amiram Eldar, Oct 07 2019 *)
Showing 1-6 of 6 results.
Comments