cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A141812 RMS values of the RMS numbers: a(n) is the root mean square of the divisors of A140480(n).

Original entry on oeis.org

1, 5, 29, 169, 145, 845, 1105, 2405, 3445, 4901, 2665, 5525, 9425, 12325, 12025, 17225, 24505, 13325, 32045, 55205, 47125, 61625, 69745, 101065, 99905, 77285, 124501, 160225, 186745, 204425, 239425, 160225, 273325, 276025, 292825, 226525, 446165, 456025
Offset: 1

Views

Author

Andrew Weimholt, Jul 07 2008

Keywords

Comments

Those numbers seem to be congruent to 0,1,-1 mod 5. - Ctibor O. Zizka, Sep 23 2008
No, the first terms congruent to 2 and 3 mod 5 are a(461) = 247511537 and a(1603) = 7177834573, respectively. - Giovanni Resta, Oct 29 2019

Examples

			a(5)=145, because A140480(5)=287, with divisors 1,7,41,287 and RMS(1,7,41,287) = 145.
		

Crossrefs

Programs

  • Mathematica
    rmsQ[n_] := IntegerQ[Sqrt[DivisorSigma[2, n]/DivisorSigma[0, n]]]; Reap[ For[k=1; n=1, k<10^7, k++, If[rmsQ[k], an = Sqrt[Mean[Divisors[k]^2]]; Print["k = ", k, " a(", n++, ") = ", an]; Sow[an]]]][[2, 1]] (* Jean-François Alcover, Dec 04 2015 *)
  • PARI
    for(n=1,1e6,if(issquare(sumdiv(n,d,d^2)/numdiv(n),&s) && denominator(s)==1,print1(s", "))) \\ Charles R Greathouse IV, Mar 08 2013

A327056 RMS numbers (A140480) that are not arithmetic (A003601).

Original entry on oeis.org

2217231104, 6221622528, 9644780288, 12127073024, 15377570560, 15520617728, 22426778880, 43551357696, 67513462016, 84107119360, 84889511168, 90906475264, 107642993920, 156987452160, 255086523648, 446676800768, 497209993984, 529918233856, 588749835520, 636345326848
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2019

Keywords

Comments

Numbers m such that the quadratic mean (the root mean square) of the divisors of m is an integer but the arithmetic mean of the divisors of m is not an integer.
Numbers m such that Q(m) = sqrt(A001157(m) / A000005(m)) is an integer but A(m) = A000203(m) / A000005(m) is not an integer.
Corresponding values of Q(m): 247511537, 368213825, 763370125, 957355945, 1237557685, 1237557685, 957355945, 1841069125, ...
Corresponding values of A(m): 418652080/9, 433603940/9, 324455362/3, 1166788784/9, 575646610/3, 1674608320/9, 315348320/3, ...
Complement of A327055 with respect to A140480.
Up to 10^13 there is only one odd term, a(29) = 3486482785825. Note that among the 7430 RMS numbers below 10^13 only 83 are even. - Giovanni Resta, Oct 29 2019

Crossrefs

Programs

  • Magma
    [m: m in [1..10^6] | not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(Sqrt(&+[d^2: d in Divisors(m)] / NumberOfDivisors(m)))]

Extensions

a(13)-a(20) from Giovanni Resta, Oct 29 2019

A326310 Arithmetic numbers (A003601) that are not RMS numbers (A140480).

Original entry on oeis.org

3, 5, 6, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78, 79, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2019

Keywords

Comments

Numbers m such that the arithmetic mean of the divisors of m is an integer but the quadratic mean (the root mean square) of the divisors of m is not an integer.
Numbers m such that A(m) = A000203(m) / A000005(m) is an integer but Q(m) = sqrt(A001157(m) / A000005(m)) is not an integer.
Corresponding values of A(m): 2, 3, 3, 6, 7, 6, 6, 9, 10, 7, 8, 9, 12, 10, 15, 9, 16, 12, 12, 19, 15, 14, 12, 22, 14, 13, 18, ...
Corresponding values of Q(m): sqrt(5), sqrt(13), sqrt(25/2), sqrt(61), sqrt(85), sqrt(125/2), sqrt(65), sqrt(145), sqrt(181), ...
Complement of A327055 with respect to A003601.

Crossrefs

Programs

  • Magma
    [m: m in [1..10^6] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and not IsIntegral(Sqrt(&+[d^2: d in Divisors(m)] / NumberOfDivisors(m)))];
  • Mathematica
    Select[Range[120],IntegerQ[Mean[Divisors[#]]]&&!IntegerQ[RootMeanSquare[ Divisors[ #]]]&] (* Harvey P. Dale, Mar 04 2023 *)

A326713 Numbers m that are neither arithmetic (A003601) nor RMS numbers (A140480).

Original entry on oeis.org

2, 4, 8, 9, 10, 12, 16, 18, 24, 25, 26, 28, 32, 34, 36, 40, 48, 50, 52, 58, 63, 64, 72, 74, 75, 76, 80, 81, 82, 84, 88, 90, 98, 100, 104, 106, 108, 112, 117, 120, 121, 122, 124, 128, 130, 136, 144, 146, 148, 152, 156, 160, 162, 170, 171, 172, 175, 176, 178
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2019

Keywords

Comments

Numbers m such that neither A(m) = A000203(m) / A000005(m) nor Q(m) = sqrt(A001157(m) / A000005(m)) is an integer.
Numbers m such that neither A(m) = A000203(m) / A000005(m) nor Q(m) = sqrt(A001157(m) / A000005(m)) is an integer.
Corresponding values of A(m): 3/2, 7/3, 15/4, 13/3, 9/2, 14/3, 31/5, 13/2, 15/2, 31/3, 21/2, 28/3, 21/2, 27/2, 91/9, 45/4, ...
Corresponding values of Q(m): sqrt(5/2), sqrt(7), sqrt(85/4), sqrt(91/3), sqrt(65/2), sqrt(35), sqrt(341/5), sqrt(455/6), ...
Sequence deviates from A049642; number 2217231104 (the first RMS number that is not arithmetic) is a term of A049642 but is not a term of this sequence.

Crossrefs

Programs

  • Magma
    [m: m in [1..10^5] | not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and not IsIntegral(Sqrt(&+[d^2: d in Divisors(m)] / NumberOfDivisors(m)))];
  • Mathematica
    Select[Range[178], !IntegerQ @ RootMeanSquare[Divisors[#]] && !Divisible[ DivisorSigma[1, #], DivisorSigma[0, #]] &] (* Amiram Eldar, Oct 20 2019 *)

A001333 Pell-Lucas numbers: numerators of continued fraction convergents to sqrt(2).

Original entry on oeis.org

1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807, 665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, 768398401, 1855077841, 4478554083, 10812186007, 26102926097, 63018038201, 152139002499, 367296043199
Offset: 0

Views

Author

Keywords

Comments

Number of n-step non-selfintersecting paths starting at (0,0) with steps of types (1,0), (-1,0) or (0,1) [Stanley].
Number of n steps one-sided prudent walks with east, west and north steps. - Shanzhen Gao, Apr 26 2011
Number of ternary strings of length n-1 with subwords (0,2) and (2,0) not allowed. - Olivier Gérard, Aug 28 2012
Number of symmetric 2n X 2 or (2n-1) X 2 crossword puzzle grids: all white squares are edge connected; at least 1 white square on every edge of grid; 180-degree rotational symmetry. - Erich Friedman
a(n+1) is the number of ways to put molecules on a 2 X n ladder lattice so that the molecules do not touch each other.
In other words, a(n+1) is the number of independent vertex sets and vertex covers in the n-ladder graph P_2 X P_n. - Eric W. Weisstein, Apr 04 2017
Number of (n-1) X 2 binary arrays with a path of adjacent 1's from top row to bottom row, see A359576. - R. H. Hardin, Mar 16 2002
a(2*n+1) with b(2*n+1) := A000129(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1.
a(2*n) with b(2*n) := A000129(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,3) = A001541(n), n >= 0 and a(2*n+1) = S(2*n,2*sqrt(2)) = A002315(n), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
Binomial transform of A077957. - Paul Barry, Feb 25 2003
For n > 0, the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 2. - Herbert Kociemba, Jun 02 2004
For n > 1, a(n) corresponds to the longer side of a near right-angled isosceles triangle, one of the equal sides being A000129(n). - Lekraj Beedassy, Aug 06 2004
Exponents of terms in the series F(x,1), where F is determined by the equation F(x,y) = xy + F(x^2*y,x). - Jonathan Sondow, Dec 18 2004
Number of n-words from the alphabet A={0,1,2} which two neighbors differ by at most 1. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Consider the mapping f(a/b) = (a + 2b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 3/2, 7/5, 17/12, 41/29, ... converging to 2^(1/2). Sequence contains the numerators. - Amarnath Murthy, Mar 22 2003 [Amended by Paul E. Black (paul.black(AT)nist.gov), Dec 18 2006]
Odd-indexed prime numerators are prime RMS numbers (A140480) and also NSW primes (A088165). - Ctibor O. Zizka, Aug 13 2008
The intermediate convergents to 2^(1/2) begin with 4/3, 10/7, 24/17, 58/41; essentially, numerators=A052542 and denominators here. - Clark Kimberling, Aug 26 2008
Equals right border of triangle A143966. Starting (1, 3, 7, ...) equals INVERT transform of (1, 2, 2, 2, ...) and row sums of triangle A143966. - Gary W. Adamson, Sep 06 2008
Inverse binomial transform of A006012; Hankel transform is := [1, 2, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
let a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2) and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
let b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2) and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(2/1) start 1/1, 3/2, 7/5, 17/12, 41/29.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=1 and n=3, then b(1,n)=a(n+1) and
1*a(1,6)^2 - a(1,5)*a(1,7) = 1*169^2 - 70*408 = 1;
1*a(1,4)*a(1,6) - a(1,5)^2 = 1*29*169 - 70^2 = 1;
b(1,5)*b(1,7) - 1*b(1,6)^2 = 99*577 - 1*239^2 = 2;
b(1,5)^2 - 1*b(1,4)*b(1,6) = 99^2 - 1*41*239 = 2.
(End)
This sequence occurs in the lower bound of the order of the set of equivalent resistances of n equal resistors combined in series and in parallel (A048211). - Sameen Ahmed Khan, Jun 28 2010
Let M = a triangle with the Fibonacci series in each column, but the leftmost column is shifted upwards one row. A001333 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
Equals the INVERTi transform of A055099. - Gary W. Adamson, Aug 14 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(8,2) = (0 0 1 0)
(0 1 0 1)
(1 0 2 0)
(0 2 0 1).
Then a(n) = (1/4)*Trace(U^n). (See also A084130, A006012.)
(End)
For n >= 1, row sums of triangle
m/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....2
.2..|..1.....2.....4
.3..|..1.....4.....4.....8
.4..|..1.....4....12.....8....16
.5..|..1.....6....12....32....16....32
.6..|..1.....6....24....32....80....32....64
.7..|..1.....8....24....80....80...192....64...128
which is the triangle for numbers 2^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) is also the number of ways to place k non-attacking wazirs on a 2 X n board, summed over all k >= 0 (a wazir is a leaper [0,1]). - Vaclav Kotesovec, May 08 2012
The sequences a(n) and b(n) := A000129(n) are entries of powers of the special case of the Brahmagupta Matrix - for details see Suryanarayan's paper. Further, as Suryanarayan remark, if we set A = 2*(a(n) + b(n))*b(n), B = a(n)*(a(n) + 2*b(n)), C = a(n)^2 + 2*a(n)*b(n) + 2*b(n)^2 we obtain integral solutions of the Pythagorean relation A^2 + B^2 = C^2, where A and B are consecutive integers. - Roman Witula, Jul 28 2012
Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, .... - R. J. Mathar, Aug 10 2012
This sequence and A000129 give the diagonal numbers described by Theon of Smyrna. - Sture Sjöstedt, Oct 20 2012
a(n) is the top left entry of the n-th power of any of the following six 3 X 3 binary matrices: [1, 1, 1; 1, 1, 1; 1, 0, 0] or [1, 1, 1; 1, 1, 0; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 1, 1, 0] or [1, 1, 1; 1, 1, 0; 1, 0, 1] or [1, 1, 1; 1, 0, 1; 1, 0, 1] or [1, 1, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
If p is prime, a(p) == 1 (mod p) (compare with similar comment for A000032). - Creighton Dement, Oct 11 2005, modified by Davide Colazingari, Jun 26 2016
a(n) = A000129(n) + A000129(n-1), where A000129(n) is the n-th Pell Number; e.g., a(6) = 99 = A000129(6) + A000129(5) = 70 + 29. Hence the sequence of fractions has the form 1 + A000129(n-1)/A000129(n), and the ratio A000129(n-1)/A000129(n)converges to sqrt(2) - 1. - Gregory L. Simay, Nov 30 2018
For n > 0, a(n+1) is the length of tau^n(1) where tau is the morphism: 1 -> 101, 0 -> 1. See Song and Wu. - Michel Marcus, Jul 21 2020
For n > 0, a(n) is the number of nonisomorphic quasitrivial semigroups with n elements, see Devillet, Marichal, Teheux. A292932 is the number of labeled quasitrivial semigroups. - Peter Jipsen, Mar 28 2021
a(n) is the permanent of the n X n tridiagonal matrix defined in A332602. - Stefano Spezia, Apr 12 2022
From Greg Dresden, May 08 2023: (Start)
For n >= 2, 4*a(n) is the number of ways to tile this T-shaped figure of length n-1 with two colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 4*a(6) = 396 different tilings.
_
|| _
|||_|||
|_|
(End)
12*a(n) = number of walks of length n in the cyclic Kautz digraph CK(3,4). - Miquel A. Fiol, Feb 15 2024

Examples

			Convergents are 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, 8119/5741, 19601/13860, 47321/33461, 114243/80782, ... = A001333/A000129.
The 15 3 X 2 crossword grids, with white squares represented by an o:
  ooo ooo ooo ooo ooo ooo ooo oo. o.o .oo o.. .o. ..o oo. .oo
  ooo oo. o.o .oo o.. .o. ..o ooo ooo ooo ooo ooo ooo .oo oo.
G.f. = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 41*x^5 + 99*x^6 + 239*x^7 + 577*x^8 + ...
		

References

  • M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.
  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
  • J. Devillet, J.-L. Marichal, and B. Teheux, Classifications of quasitrivial semigroups, Semigroup Forum, 100 (2020), 743-764.
  • Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111.
  • Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 288.
  • A. F. Horadam, R. P. Loh, and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
  • Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
  • Kin Y. Li, Math Problem Book I, 2001, p. 24, Problem 159.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 102, Problem 10.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 203, Example 4.1.2.
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
  • R. C. Tilley et al., The cell growth problem for filaments, Proc. Louisiana Conf. Combinatorics, ed. R. C. Mullin et al., Baton Rouge, 1970, 310-339.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 34.

Crossrefs

For denominators see A000129.
See A040000 for the continued fraction expansion of sqrt(2).
See also A078057 which is the same sequence without the initial 1.
Cf. also A002203, A152113.
Row sums of unsigned Chebyshev T-triangle A053120. a(n)= A054458(n, 0) (first column of convolution triangle).
Row sums of A140750, A160756, A135837.
Equals A034182(n-1) + 2 and A084128(n)/2^n. First differences of A052937. Partial sums of A052542. Pairwise sums of A048624. Bisection of A002965.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Second row of the array in A135597.
Cf. A055099.
Cf. A028859, A001906 / A088305, A033303, A000225, A095263, A003945, A006356, A002478, A214260, A001911 and A000217 for other restricted ternary words.
Cf. Triangle A106513 (alternating row sums).
Equals A293004 + 1.
Cf. A033539, A332602, A086395 (subseq. of primes).

Programs

  • Haskell
    a001333 n = a001333_list !! n
    a001333_list = 1 : 1 : zipWith (+)
                           a001333_list (map (* 2) $ tail a001333_list)
    -- Reinhard Zumkeller, Jul 08 2012
    
  • Magma
    [n le 2 select 1 else 2*Self(n-1)+Self(n-2): n in [1..35]]; // Vincenzo Librandi, Nov 10 2018
    
  • Maple
    A001333 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else 2*procname(n-1)+procname(n-2) fi end;
    Digits := 50; A001333 := n-> round((1/2)*(1+sqrt(2))^n);
    with(numtheory): cf := cfrac (sqrt(2),1000): [seq(nthnumer(cf,i), i=0..50)];
    a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^n):
    seq(a(n), n=0..33);  # Alois P. Heinz, Aug 01 2008
    A001333List := proc(m) local A, P, n; A := [1,1]; P := [1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-2]]);
    A := [op(A), P[-1]] od; A end: A001333List(32); # Peter Luschny, Mar 26 2022
  • Mathematica
    Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 08 2006 *)
    Table[((1 - Sqrt[2])^n + (1 + Sqrt[2])^n)/2, {n, 0, 29}] // Simplify (* Robert G. Wilson v, May 02 2006 *)
    a[0] = 1; a[1] = 1; a[n_] := a[n] = 2a[n - 1] + a[n - 2]; Table[a@n, {n, 0, 29}] (* Robert G. Wilson v, May 02 2006 *)
    Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, May 02 2006 *)
    a=c=0;t={b=1}; Do[c=a+b+c; AppendTo[t,c]; a=b;b=c,{n,40}]; t (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
    LinearRecurrence[{2, 1}, {1, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
    Join[{1}, Numerator[Convergents[Sqrt[2], 30]]] (* Harvey P. Dale, Aug 22 2011 *)
    Table[(-I)^n ChebyshevT[n, I], {n, 10}] (* Eric W. Weisstein, Apr 04 2017 *)
    CoefficientList[Series[(-1 + x)/(-1 + 2 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
    Table[Sqrt[(ChebyshevT[n, 3] + (-1)^n)/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 17 2018 *)
  • PARI
    {a(n) = if( n<0, (-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [1, 1]}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    {a(n) = polchebyshev(n, 1, I) / I^n}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    a(n) = real((1 + quadgen(8))^n); \\ Michel Marcus, Mar 16 2021
    
  • PARI
    { for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[1, 1]; if (a > 10^(10^3 - 6), break); write("b001333.txt", n, " ", a); ); } \\ Harry J. Smith, Jun 12 2009
    
  • Python
    from functools import cache
    @cache
    def a(n): return 1 if n < 2 else 2*a(n-1) + a(n-2)
    print([a(n) for n in range(32)]) # Michael S. Branicky, Nov 13 2022
  • Sage
    from sage.combinat.sloane_functions import recur_gen2
    it = recur_gen2(1,1,2,1)
    [next(it) for i in range(30)] ## Zerinvary Lajos, Jun 24 2008
    
  • Sage
    [lucas_number2(n,2,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = A055642(A125058(n)). - Reinhard Zumkeller, Feb 02 2007
a(n) = 2a(n-1) + a(n-2);
a(n) = ((1-sqrt(2))^n + (1+sqrt(2))^n)/2.
a(n)+a(n+1) = 2 A000129(n+1). 2*a(n) = A002203(n).
G.f.: (1 - x) / (1 - 2*x - x^2) = 1 / (1 - x / (1 - 2*x / (1 + x))). - Simon Plouffe in his 1992 dissertation.
A000129(2n) = 2*A000129(n)*a(n). - John McNamara, Oct 30 2002
a(n) = (-i)^n * T(n, i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
a(n) = a(n-1) + A052542(n-1), n>1. a(n)/A052542(n) converges to sqrt(1/2). - Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003
E.g.f.: exp(x)cosh(x*sqrt(2)). - Paul Barry, May 08 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)2^k. - Paul Barry, May 13 2003
For n > 0, a(n)^2 - (1 + (-1)^(n))/2 = Sum_{k=0..n-1} ((2k+1)*A001653(n-1-k)); e.g., 17^2 - 1 = 288 = 1*169 + 3*29 + 5*5 + 7*1; 7^2 = 49 = 1*29 + 3*5 + 5*1. - Charlie Marion, Jul 18 2003
a(n+2) = A078343(n+1) + A048654(n). - Creighton Dement, Jan 19 2005
a(n) = A000129(n) + A000129(n-1) = A001109(n)/A000129(n) = sqrt(A001110(n)/A000129(n)^2) = ceiling(sqrt(A001108(n))). - Henry Bottomley, Apr 18 2000
Also the first differences of A000129 (the Pell numbers) because A052937(n) = A000129(n+1) + 1. - Graeme McRae, Aug 03 2006
a(n) = Sum_{k=0..n} A122542(n,k). - Philippe Deléham, Oct 08 2006
For another recurrence see A000129.
a(n) = Sum_{k=0..n} A098158(n,k)*2^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = upper left and lower right terms of [1,1; 2,1]^n. - Gary W. Adamson, Mar 12 2008
If p[1]=1, and p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
For n>=2, a(n)=F_n(2)+F_(n+1)(2), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(-n) = (-1)^n * a(n). - Michael Somos, Sep 02 2012
Dirichlet g.f.: (PolyLog(s,1-sqrt(2)) + PolyLog(s,1+sqrt(2)))/2. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A000129(n) - A000129(n-1), where A000129(n) is the n-th Pell Number. Hence the continued fraction is of the form 1-(A000129(n-1)/A000129(n)). - Gregory L. Simay, Nov 09 2018
a(n) = (A000129(n+3) + A000129(n-3))/10, n>=3. - Paul Curtz, Jun 16 2021
a(n) = (A000129(n+6) - A000129(n-6))/140, n>=6. - Paul Curtz, Jun 20 2021
a(n) = round((1/2)*sqrt(Product_{k=1..n} 4*(1 + sin(k*Pi/n)^2))), for n>=1. - Greg Dresden, Dec 28 2021
a(n)^2 + a(n+1)^2 = A075870(n+1) = 2*(b(n)^2 + b(n+1)^2) for all n in Z where b(n) := A000129(n). - Michael Somos, Apr 02 2022
a(n) = 2*A048739(n-2)+1. - R. J. Mathar, Feb 01 2024
Sum_{n>=1} 1/a(n) = 1.5766479516393275911191017828913332473... - R. J. Mathar, Feb 05 2024
From Peter Bala, Jul 06 2025: (Start)
G.f.: Sum_{n >= 1} (-1)^(n+1) * x^(n-1) * Product_{k = 1..n} (1 - k*x)/(1 - 3*x + k*x^2).
The following series telescope:
Sum_{n >= 1} (-1)^(n+1)/(a(2*n) + 1/a(2*n)) = 1/4, since 1/(a(2*n) + 1/a(2*n)) = 1/A077445(n) + 1/A077445(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n+1) - 1/a(2*n+1)) = 1/8, since. 1/(a(2*n+1) - 1/a(2*n+1)) = 1/(4*Pell(2*n)) + 1/(4*Pell(2*n+2)), where Pell(n) = A000129(n).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n+1) + 9/a(2*n+1)) = 1/10, since 1/(a(2*n+1) + 9/a(2*n+1)) = b(n) + b(n+1), where b(n) = A001109(n)/(2*Pell(2*n-1)*Pell(2*n+1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n)*a(n+1)) = 1 - sqrt(2)/2 = A268682, since (-1)^(n+1)/(a(n)*a(n+1)) = Pell(n)/a(n) - Pell(n+1)/a(n+1). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A001599 Harmonic or Ore numbers: numbers k such that the harmonic mean of the divisors of k is an integer.

Original entry on oeis.org

1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 950976, 1089270, 1421280, 1539720
Offset: 1

Views

Author

Keywords

Comments

Note that the harmonic mean of the divisors of k = k*tau(k)/sigma(k).
Equivalently, k*tau(k)/sigma(k) is an integer, where tau(k) (A000005) is the number of divisors of k and sigma(k) is the sum of the divisors of k (A000203).
Equivalently, the average of the divisors of k divides k.
Note that the average of the divisors of k is not necessarily an integer, so the above wording should be clarified as follows: k divided by the average is an integer. See A007340. - Thomas Ordowski, Oct 26 2014
Ore showed that every perfect number (A000396) is harmonic. The converse does not hold: 140 is harmonic but not perfect. Ore conjectured that 1 is the only odd harmonic number.
Other examples of power mean numbers k such that some power mean of the divisors of k is an integer are the RMS numbers A140480. - Ctibor O. Zizka, Sep 20 2008
Conjecture: Every harmonic number is practical (A005153). I've verified this refinement of Ore's conjecture for all terms less than 10^14. - Jaycob Coleman, Oct 12 2013
Conjecture: All terms > 1 are Zumkeller numbers (A083207). Verified for all n <= 50. - Ivan N. Ianakiev, Nov 22 2017
Verified for n <= 937. - David A. Corneth, Jun 07 2020
Kanold (1957) proved that the asymptotic density of the harmonic numbers is 0. - Amiram Eldar, Jun 01 2020
Zachariou and Zachariou (1972) called these numbers "Ore numbers", after the Norwegian mathematician Øystein Ore (1899 - 1968), who was the first to study them. Ore (1948) and Garcia (1954) referred to them as "numbers with integral harmonic mean of divisors". The term "harmonic numbers" was used by Pomerance (1973). They are sometimes called "harmonic divisor numbers", or "Ore's harmonic numbers", to differentiate them from the partial sums of the harmonic series. - Amiram Eldar, Dec 04 2020
Conjecture: all terms > 1 have a Mersenne prime as a factor. - Ivan Borysiuk, Jan 28 2024

Examples

			k=140 has sigma_0(140)=12 divisors with sigma_1(140)=336. The average divisor is 336/12=28, an integer, and divides k: k=5*28, so 140 is in the sequence.
k=496 has sigma_0(496)=10, sigma_1(496)=992: the average divisor 99.2 is not an integer, but k/(sigma_1/sigma_0)=496/99.2=5 is an integer, so 496 is in the sequence.
		

References

  • G. L. Cohen and Deng Moujie, On a generalization of Ore's harmonic numbers, Nieuw Arch. Wisk. (4), 16 (1998) 161-172.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
  • W. H. Mills, On a conjecture of Ore, Proc. Number Theory Conf., Boulder CO, 1972, 142-146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

See A003601 for analogs referring to arithmetic mean and A000290 for geometric mean of divisors.
See A001600 and A090240 for the integer values obtained.
sigma_0(n) (or tau(n)) is the number of divisors of n (A000005).
sigma_1(n) (or sigma(n)) is the sum of the divisors of n (A000203).
Cf. A007340, A090945, A035527, A007691, A074247, A053783. Not a subset of A003601.
Cf. A027750.

Programs

  • GAP
    Concatenation([1],Filtered([2,4..2000000],n->IsInt(n*Tau(n)/Sigma(n)))); # Muniru A Asiru, Nov 26 2018
    
  • Haskell
    import Data.Ratio (denominator)
    import Data.List (genericLength)
    a001599 n = a001599_list !! (n-1)
    a001599_list = filter ((== 1) . denominator . hm) [1..] where
       hm x = genericLength ds * recip (sum $ map (recip . fromIntegral) ds)
              where ds = a027750_row x
    -- Reinhard Zumkeller, Jun 04 2013, Jan 20 2012
    
  • Maple
    q:= (p,k) -> p^k*(p-1)*(k+1)/(p^(k+1)-1):
    filter:= proc(n) local t; mul(q(op(t)),t=ifactors(n)[2])::integer end proc:
    select(filter, [$1..10^6]); # Robert Israel, Jan 14 2016
  • Mathematica
    Do[ If[ IntegerQ[ n*DivisorSigma[0, n]/ DivisorSigma[1, n]], Print[n]], {n, 1, 1550000}]
    Select[Range[1600000],IntegerQ[HarmonicMean[Divisors[#]]]&] (* Harvey P. Dale, Oct 20 2012 *)
  • PARI
    a(n)=if(n<0,0,n=a(n-1);until(0==(sigma(n,0)*n)%sigma(n,1),n++);n) /* Michael Somos, Feb 06 2004 */
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return (n*sigma(n, 0))%sigma(n, 1) == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021
    
  • Python
    from itertools import count, islice
    from functools import reduce
    from math import prod
    from sympy import factorint
    def A001599_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
            if not reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s:
                yield n
    A001599_list = list(islice(A001599_gen(),20)) # Chai Wah Wu, Feb 14 2023

Formula

{ k : A106315(k) = 0 }. - R. J. Mathar, Jan 25 2017

Extensions

More terms from Klaus Brockhaus, Sep 18 2001

A003601 Numbers j such that the average of the divisors of j is an integer: sigma_0(j) divides sigma_1(j). Alternatively, numbers j such that tau(j) (A000005(j)) divides sigma(j) (A000203(j)).

Original entry on oeis.org

1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78, 79, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 105
Offset: 1

Views

Author

Keywords

Comments

Sometimes called arithmetic numbers.
Generalized (sigma_r)-numbers are numbers j for which sigma_r(j)/sigma_0(j) = c^r. Sigma_r(j) denotes the sum of the r-th powers of the divisors of j; c,r are positive integers. The numbers in this sequence are sigma_1-numbers; those in A140480 are sigma_2-numbers. - Ctibor O. Zizka, Jul 14 2008
{a(n)} = union A175678 and A175679 where A175678 = numbers m such that the arithmetic mean Ad(m) of divisors of m and the arithmetic mean Ah(m) of numbers h < m such that gcd(h,m) = 1 are both integers and A175679 = numbers m such that the arithmetic mean Ad(m) of the divisors of m and the arithmetic mean Ak(m) of the numbers k <= m are both integers. - Jaroslav Krizek, Aug 07 2010
All odd primes (A065091) are arithmetic numbers. - Wesley Ivan Hurt, Oct 04 2013
A069928(n) = number of arithmetic numbers not greater than n. - Reinhard Zumkeller, Jul 28 2014
A102187(n) divides a(n) for a(n) = 1, 6, 140, 270, 672, ... A007340. - Thomas Ordowski, Oct 24 2014
The quotients sigma(j)/tau(j) are in A102187. - Bernard Schott, Jun 07 2017

Examples

			Sigma(6) = 12, tau(6) = 4, sigma(6)/tau(6) = 3 so 6 belongs to this sequence. - _Bernard Schott_, Jun 07 2017
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement is A049642.
Cf. A245644, A245656, A069928. Nonprimes are in A023883.

Programs

  • GAP
    a:=Filtered([1..110],n->Sigma(n) mod Tau(n)=0);; Print(a); # Muniru A Asiru, Jan 25 2019
  • Haskell
    a003601 n = a003601_list !! (n-1)
    a003601_list = filter ((== 1) . a245656) [1..]
    -- Reinhard Zumkeller, Jul 28 2014, Dec 31 2013, Jan 06 2012
    
  • Maple
    with(numtheory); t := [ ]: f := [ ]: for n from 1 to 500 do if sigma(n) mod tau(n) = 0 then t := [ op(t), n ] else f := [ op(f), n ]; fi; od: t; # corrected by Wesley Ivan Hurt, Oct 03 2013
  • Mathematica
    Select[Range[120], IntegerQ[DivisorSigma[1, # ]/DivisorSigma[0, # ]] &] (* Stefan Steinerberger, Apr 03 2006 *)
  • PARI
    is(n)=sigma(n)%numdiv(n)==0 \\ Charles R Greathouse IV, Jul 10 2012
    
  • Python
    from sympy import divisors, divisor_count
    [n for n in range(1,10**5) if not sum(divisors(n)) % divisor_count(n)] # Chai Wah Wu, Aug 05 2014
    

Formula

a(n) ~ n. - Charles R Greathouse IV, Jul 10 2012
A245656(a(n)) = 1. - Reinhard Zumkeller, Jul 28 2014

Extensions

David W. Wilson, Oct 15 1996, points out that 30 was missing.
More terms from Stefan Steinerberger, Apr 03 2006

A088165 NSW primes: NSW numbers that are also prime.

Original entry on oeis.org

7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599, 123426017006182806728593424683999798008235734137469123231828679
Offset: 1

Views

Author

Christian Schroeder, Sep 21 2003

Keywords

Comments

Next term a(9) is too large (99 digits) to include here. - Ray Chandler, Sep 21 2003
These primes are the prime RMS numbers (A140480): primes p such that (1+p^2)/2 is a square r^2. Then r is a Pell number, A000129. - T. D. Noe, Jul 01 2008
Also prime numerators with an odd index in A001333. - Ctibor O. Zizka, Aug 13 2008
r in the above note of T. D. Noe is a prime Pell number (A000129) with an odd index. - Ctibor O. Zizka, Aug 13 2008
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k = a(1)-3, x = (1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in the OEIS: a(1)=4 gives A002878, primes in it A121534. a(1)=5 gives A001834, primes in it A086386. a(1)=6 gives A030221, primes in it not in the OEIS {29, 139, 3191, ...}. a(1)=7 gives A002315, primes in it A088165. a(1)=8 gives A033890, primes in it not in the OEIS (do there exist any ?). a(1)=9 gives A057080, primes in it not in the OEIS {71, 34649, 16908641, ...}. a(1)=10 gives A057081, primes in it not in the OEIS {389806471, 192097408520951, ...}. - Ctibor O. Zizka, Sep 02 2008

References

  • Paulo Ribenboim, The New Book of Prime Number Records, 3rd edition, Springer-Verlag, New York, 1995, pp. 367-369.

Crossrefs

Cf. A002315 (NSW numbers), A005850 (indices for NSW primes).

Programs

  • PARI
    w=3+quadgen(32); forprime(p=2,1e3, if(ispseudoprime(t=imag((1+w)*w^p)), print1(t", "))) \\ Charles R Greathouse IV, Apr 29 2015

Formula

a(n) mod A005850(n) = 1. - Altug Alkan, Mar 17 2016

Extensions

More terms from Ray Chandler, Sep 21 2003

A144338 Squarefree numbers > 1.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 18 2008

Keywords

Comments

Nontrivial products of distinct primes. Sequence A005117 without the initial 1.
Also numbers n for which the following equation holds : (2^r)-sigma_0(p(1)*...*p(r)) = 0. This sequence describes the way RMS numbers (A140480) are grouped. In general if n = p(1)^alpha(1) *...* p(s)^alpha(s), alpha(i)>=1, we have the equation [2^sum_i=1..s{alpha(i)}] - sigma_0(p(1)^alpha(1) *...* p(s)^alpha(s)) = T. In terms of OEIS sequences the equation is : 2^(A001055(n)) - (A000005(n)) = T. This sequence has T=0, n=p(1)*...*p(r). If T=(2^k)-(k+1) then n=p^k. T splits the set of integers into subsets according to the form of prime factorization of the number n.
These can be computed with a modified Sieve of Eratosthenes: [1] start at n=2, [2] if (n is crossed out an even number of times) then (append n to the sequence and cross out all multiples of n), [3] set n:=n+1 and go to step 2; compare with the sieve for the complement of perfect powers in A007916. - Reinhard Zumkeller, Mar 19 2009
Numbers such that the harmonic mean of Omega(n) (A001222) and omega(n) (A001221) is a positive integer. - Wesley Ivan Hurt, Oct 13 2013

Crossrefs

Cf. A076259 (first differences, without the first 1).

Programs

  • Maple
    A144338:= n->`if`(numtheory[issqrfree](n) = true,n,NULL); seq(A144338(k), k=2..113); # Wesley Ivan Hurt, Oct 13 2013
  • Mathematica
    Select[Range[2,120],SquareFreeQ] (* Harvey P. Dale, May 07 2012 *)
  • PARI
    is(n)=issquarefree(n) && n>1 \\ Charles R Greathouse IV, Nov 05 2017
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A144338(n):
        def f(x): return int(n+x+1-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Feb 14 2025

Extensions

Corrected A-number typo. - R. J. Mathar, Feb 21 2009
Minor edits from Charles R Greathouse IV, Mar 18 2010

A020486 Average of squares of divisors is an integer: numbers k such that sigma_0(k) divides sigma_2(k).

Original entry on oeis.org

1, 3, 4, 5, 7, 11, 12, 13, 15, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 33, 35, 37, 39, 41, 43, 44, 47, 48, 49, 51, 52, 53, 55, 57, 59, 60, 61, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 83, 84, 85, 87, 89, 91, 92, 93, 95, 97, 100, 101, 103, 105, 107, 108, 109, 111, 112, 113, 115, 116
Offset: 1

Views

Author

Keywords

Comments

If sigma_2(k)/sigma_0(k) is a square then k is an RMS-number (A140480). - Ctibor O. Zizka, Jul 14 2008

Crossrefs

Programs

  • Haskell
    a020486 n = a020486_list !! (n-1)
    a020486_list = filter (\x -> a001157 x `mod` a000005 x == 0) [1..]
    -- Reinhard Zumkeller, Jan 15 2013
    
  • Magma
    [n: n in [1..120] | IsZero(DivisorSigma(2, n) mod NumberOfDivisors(n))]; // Bruno Berselli, Apr 11 2013
    
  • Mathematica
    Select[Range[150],Divisible[DivisorSigma[2,#],DivisorSigma[0,#]]&] (* Harvey P. Dale, May 03 2011 *)
  • PARI
    is(n)=sigma(n,2)%numdiv(n)==0 \\ Charles R Greathouse IV, Jul 02 2013

Formula

A001157(k) mod A000005(k) = 0. - Reinhard Zumkeller, Jan 15 2013
Showing 1-10 of 43 results. Next