cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A159902 Concatenation of the first n terms of A144338.

Original entry on oeis.org

2, 23, 235, 2356, 23567, 2356710, 235671011, 23567101113, 2356710111314, 235671011131415, 23567101113141517, 2356710111314151719, 235671011131415171921, 23567101113141517192122
Offset: 1

Views

Author

Jaroslav Krizek, Apr 25 2009

Keywords

Comments

Concatenation of the squarefree numbers A005117(2) to A005117(n+1).

Crossrefs

Programs

  • Mathematica
    Module[{nn=25,sf},sf=Select[Range[2,nn],SquareFreeQ];Table[FromDigits[Flatten[ IntegerDigits/@ Take[sf,n]]],{n,Length[sf]}]] (* Harvey P. Dale, Oct 09 2023 *)

Extensions

Slightly edited by R. J. Mathar, Apr 28 2009

A382408 a(n) is the number of terms in A071174 whose radical is A144338(n).

Original entry on oeis.org

1, 1, 1, 5, 1, 9, 1, 1, 13, 14, 1, 1, 20, 21, 1, 25, 1, 406, 1, 32, 33, 34, 1, 37, 38, 1, 820, 1, 45, 1, 50, 1, 54, 56, 57, 1, 1, 61, 64, 2080, 1, 68, 2346, 1, 1, 73, 76, 2926, 1, 81, 1, 84, 85, 86, 1, 90, 92, 93, 94, 1, 1, 5050, 1, 5356, 105, 1, 1, 5886, 110
Offset: 1

Views

Author

Felix Huber, Apr 04 2025

Keywords

Comments

a(n) is the number of positive integers k for which A007947(A071174(k)) = A144338(n).

Examples

			The a(6) = 9 numbers in A071174 that have the radical A144338(6) = 10 are 2^9*5^1 = 2560, 2^8*5^2 = 6400, 2^7*5^3 = 16000, 2^6*5^4 = 40000, 2^5*5^5 = 100000, 2^4*5^6 = 250000, 2^3*5^7 = 625000, 2^2*5^8 = 1562500, 2^1*5^9 = 3906250.
		

Crossrefs

Programs

  • Maple
    A144338:=proc(n)
        option remember;
        local a;
        if n=1 then
            2
        else
            for a from procname(n-1)+1 do
                if IsSquareFree(a) then
                    return a
                fi
            od
        fi;
    end proc;
    A382408:=n->binomial(A144338(n)-1,A144338(n)-NumberTheory:-Omega(A144338(n)));
    seq(A382408(n),n=1..69);

Formula

a(n) = binomial(A144338(n) - 1, A144338(n) - Omega(A144338(n))).

A001221 Number of distinct primes dividing n (also called omega(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 3, 2
Offset: 1

Views

Author

Keywords

Comments

From Peter C. Heinig (algorithms(AT)gmx.de), Mar 08 2008: (Start)
This is also the number of maximal ideals of the ring (Z/nZ,+,*). Since every finite integral domain must be a field, every prime ideal of Z/nZ is a maximal ideal and since in general each maximal ideal is prime, there are just as many prime ideals as maximal ones in Z/nZ, so the sequence gives the number of prime ideals of Z/nZ as well.
The reason why this number is given by the sequence is that the ideals of Z/nZ are precisely the subgroups of (Z/nZ,+). Hence for an ideal to be maximal it has form a maximal subgroup of (Z/nZ,+) and this is equivalent to having prime index in (Z/nZ) and this is equivalent to being generated by a single prime divisor of n.
Finally, all the groups arising in this way have different orders, hence are different, so the number of maximal ideals equals the number of distinct primes dividing n. (End)
Equals double inverse Mobius transform of A143519, where A051731 = the inverse Mobius transform. - Gary W. Adamson, Aug 22 2008
a(n) is the number of unitary prime power divisors of n (not including 1). - Jaroslav Krizek, May 04 2009 [corrected by Ilya Gutkovskiy, Oct 09 2019]
Sum_{d|n} 2^(-A001221(d) - A001222(n/d)) = Sum_{d|n} 2^(-A001222(d) - A001221(n/d)) = 1 (see Dressler and van de Lune link). - Michel Marcus, Dec 18 2012
Up to 2*3*5*7*11*13*17*19*23*29 - 1 = 6469693230 - 1, also the decimal expansion of the constant 0.01111211... = Sum_{k>=0} 1/(10 ^ A000040(k) - 1) (see A073668). - Eric Desbiaux, Jan 20 2014
The average order of a(n): Sum_{k=1..n} a(k) ~ Sum_{k=1..n} log log k. - Daniel Forgues, Aug 13-16 2015
From Peter Luschny, Jul 13 2023: (Start)
We can use A001221 and A001222 to classify the positive integers as follows.
A001222(n) = A001221(n) = 0 singles out {1}.
Restricting to n > 1:
A001222(n)^A001221(n) = 1: A000040, prime numbers.
A001221(n)^A001222(n) = 1: A246655, prime powers.
A001222(n)^A001221(n) > 1: A002808, the composite numbers.
A001221(n)^A001222(n) > 1: A024619, complement of A246655.
n^(A001222(n) - A001221(n)) = 1: A144338, products of distinct primes. (End)
Inverse Möbius transform of the characteristic function of primes (A010051). - Wesley Ivan Hurt, Jun 22 2024
Dirichlet convolution of A010051(n) and 1. - Wesley Ivan Hurt, Jul 15 2025

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 48-57.
  • J. Peters, A. Lodge and E. J. Ternouth, E. Gifford, Factor Table (n<100000) (British Association Mathematical Tables Vol.V), Burlington House/Cambridge University Press London 1935.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001222 (primes counted with multiplicity), A046660, A285577, A346617. Partial sums give A013939.
Sum of the k-th powers of the primes dividing n for k=0..10: this sequence (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), A351196 (k=8), A351197 (k=9), A351198 (k=10).
Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k=0..10: this sequence (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    a001221 = length . snd . unzip . factorise
    -- Reinhard Zumkeller, Nov 28 2015
    
  • Julia
    using Nemo
    function NumberOfPrimeFactors(n; distinct=true)
        distinct && return length(factor(ZZ(n)))
        sum(e for (p, e) in factor(ZZ(n)); init=0)
    end
    println([NumberOfPrimeFactors(n) for n in 1:60]) # Peter Luschny, Jan 02 2024
  • Magma
    [#PrimeDivisors(n): n in [1..120]]; // Bruno Berselli, Oct 15 2021
    
  • Maple
    A001221 := proc(n) local t1, i; if n = 1 then return 0 else t1 := 0; for i to n do if n mod ithprime(i) = 0 then t1 := t1 + 1 end if end do end if; t1 end proc;
    A001221 := proc(n) nops(numtheory[factorset](n)) end proc: # Emeric Deutsch
    omega := n -> NumberTheory:-NumberOfPrimeFactors(n, 'distinct'): # Peter Luschny, Jun 15 2025
  • Mathematica
    Array[ Length[ FactorInteger[ # ] ]&, 100 ]
    PrimeNu[Range[120]]  (* Harvey P. Dale, Apr 26 2011 *)
  • MuPAD
    func(nops(numlib::primedivisors(n)), n):
    
  • MuPAD
    numlib::omega(n)$ n=1..110 // Zerinvary Lajos, May 13 2008
    
  • PARI
    a(n)=omega(n)
    
  • Python
    from sympy.ntheory import primefactors
    print([len(primefactors(n)) for n in range(1, 1001)])  # Indranil Ghosh, Mar 19 2017
    
  • Sage
    def A001221(n): return sum(1 for p in divisors(n) if is_prime(p))
    [A001221(n) for n in (1..80)] # Peter Luschny, Feb 01 2012
    
  • SageMath
    [sloane.A001221(n) for n in (1..111)] # Giuseppe Coppoletta, Jan 19 2015
    
  • SageMath
    [gp.omega(n) for n in range(1,101)] # G. C. Greubel, Jul 13 2024
    

Formula

G.f.: Sum_{k>=1} x^prime(k)/(1-x^prime(k)). - Benoit Cloitre, Apr 21 2003; corrected by Franklin T. Adams-Watters, Sep 01 2009
Dirichlet generating function: zeta(s)*primezeta(s). - Franklin T. Adams-Watters, Sep 11 2005
Additive with a(p^e) = 1.
a(1) = 0, a(p) = 1, a(pq) = 2, a(pq...z) = k, a(p^k) = 1, where p, q, ..., z are k distinct primes and k natural numbers. - Jaroslav Krizek, May 04 2009
a(n) = log_2(Sum_{d|n} mu(d)^2). - Enrique Pérez Herrero, Jul 09 2012
a(A002110(n)) = n, i.e., a(prime(n)#) = n. - Jean-Marc Rebert, Jul 23 2015
a(n) = A091221(A091202(n)) = A069010(A156552(n)). - Antti Karttunen, circa 2004 & Mar 06 2017
L.g.f.: -log(Product_{k>=1} (1 - x^prime(k))^(1/prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
a(n) = log_2(Sum_{k=1..n} mu(gcd(n,k))^2/phi(n/gcd(n,k))) = log_2(Sum_{k=1..n} mu(n/gcd(n,k))^2/phi(n/gcd(n,k))), where phi = A000010 and mu = A008683. - Richard L. Ollerton, May 13 2021
Sum_{k=1..n} 2^(-a(gcd(n,k)) - A001222(n/gcd(n,k)))/phi(n/gcd(n,k)) = Sum_{k=1..n} 2^(-A001222(gcd(n,k)) - a(n/gcd(n,k)))/phi(n/gcd(n,k)) = 1, where phi = A000010. - Richard L. Ollerton, May 13 2021
a(n) = A005089(n) + A005091(n) + A059841(n) = A005088(n) +A005090(n) +A079978(n). - R. J. Mathar, Jul 22 2021
From Wesley Ivan Hurt, Jun 22 2024: (Start)
a(n) = Sum_{p|n, p prime} 1.
a(n) = Sum_{d|n} c(d), where c = A010051. (End)

A007916 Numbers that are not perfect powers.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83
Offset: 1

Views

Author

R. Muller

Keywords

Comments

From Gus Wiseman, Oct 23 2016: (Start)
There is a 1-to-1 correspondence between integers N >= 2 and sequences a(x_1),a(x_2),...,a(x_k) of terms from this sequence. Every N >= 2 can be written uniquely as a "power tower"
N = a(x_1)^a(x_2)^a(x_3)^...^a(x_k),
where the exponents are to be nested from the right.
Proof: If N is not a perfect power then N = a(x) for some x, and we are done. Otherwise, write N = a(x_1)^M for some M >=2, and repeat the process. QED
Of course, prime numbers also have distinct power towers (see A164336). (End)
These numbers can be computed with a modified Sieve of Eratosthenes: (1) start at n=2; (2) if n is not crossed out, then append n to the sequence and cross out all powers of n; (3) set n = n+1 and go to step 2. - Sam Alexander, Dec 15 2003
These are all numbers such that the multiplicities of the prime factors have no common divisor. The first number in the sequence whose prime multiplicities are not coprime is 180 = 2 * 2 * 3 * 3 * 5. Mathematica: CoprimeQ[2,2,1]->False. - Gus Wiseman, Jan 14 2017

Examples

			Example of the power tower factorizations for the first nine positive integers: 1=1, 2=a(1), 3=a(2), 4=a(1)^a(1), 5=a(3), 6=a(4), 7=a(5), 8=a(1)^a(2), 9=a(2)^a(1). - _Gus Wiseman_, Oct 20 2016
		

Crossrefs

Complement of A001597. Union of A052485 and A052486.
Cf. A153158 (squares of these numbers).
See A277562, A277564, A277576, A277615 for more about the power towers.
A278029 is a left inverse.
Cf. A052409.

Programs

  • Haskell
    a007916 n = a007916_list !! (n-1)
    a007916_list = filter ((== 1) . foldl1 gcd . a124010_row) [2..]
    -- Reinhard Zumkeller, Apr 13 2012
    
  • Magma
    [n : n in [2..1000] | not IsPower(n) ];
    
  • Maple
    See link.
  • Mathematica
    a = {}; Do[If[Apply[GCD, Transpose[FactorInteger[n]][[2]]] == 1, a = Append[a, n]], {n, 2, 200}];
    Select[Range[2,200],GCD@@FactorInteger[#][[All,-1]]===1&] (* Michael De Vlieger, Oct 21 2016. Corrected by Gus Wiseman, Jan 14 2017 *)
  • PARI
    is(n)=!ispower(n)&&n>1 \\ Charles R Greathouse IV, Jul 01 2013
    
  • Python
    from sympy import mobius, integer_nthroot
    def A007916(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 13 2024

Formula

A075802(a(n)) = 0. - Reinhard Zumkeller, Mar 19 2009
Gcd(exponents in prime factorization of a(n)) = 1, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
a(n) ~ n. - Charles R Greathouse IV, Jul 01 2013
A052409(a(n)) = 1. - Ridouane Oudra, Nov 23 2024

Extensions

More terms from Henry Bottomley, Sep 12 2000
Edited by Charles R Greathouse IV, Mar 18 2010
Further edited by N. J. A. Sloane, Nov 09 2016

A347466 Number of factorizations of n^2.

Original entry on oeis.org

1, 2, 2, 5, 2, 9, 2, 11, 5, 9, 2, 29, 2, 9, 9, 22, 2, 29, 2, 29, 9, 9, 2, 77, 5, 9, 11, 29, 2, 66, 2, 42, 9, 9, 9, 109, 2, 9, 9, 77, 2, 66, 2, 29, 29, 9, 2, 181, 5, 29, 9, 29, 2, 77, 9, 77, 9, 9, 2, 269, 2, 9, 29, 77, 9, 66, 2, 29, 9, 66, 2, 323, 2, 9, 29, 29
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			The a(1) = 1 through a(8) = 11 factorizations:
  ()  (4)    (9)    (16)       (25)   (36)       (49)   (64)
      (2*2)  (3*3)  (2*8)      (5*5)  (4*9)      (7*7)  (8*8)
                    (4*4)             (6*6)             (2*32)
                    (2*2*4)           (2*18)            (4*16)
                    (2*2*2*2)         (3*12)            (2*4*8)
                                      (2*2*9)           (4*4*4)
                                      (2*3*6)           (2*2*16)
                                      (3*3*4)           (2*2*2*8)
                                      (2*2*3*3)         (2*2*4*4)
                                                        (2*2*2*2*4)
                                                        (2*2*2*2*2*2)
		

Crossrefs

Positions of 2's are the primes (A000040), which have squares A001248.
The restriction to powers of 2 is A058696.
The additive version (partitions) is A072213.
The case of integer alternating product is A347459, nonsquared A347439.
A000290 lists squares, complement A000037.
A001055 counts factorizations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347050 = factorizations with alternating permutation, complement A347706.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n>k, 0, 1)+`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= proc(n) option remember; b((l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
          sort(map(i-> i[2], ifactors(n^2)[2]), `>`))$2)
        end:
    seq(a(n), n=1..76);  # Alois P. Heinz, Oct 14 2021
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[n^2]],{n,25}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
    A347466(n) = A001055(n^2); \\ Antti Karttunen, Oct 13 2021

Formula

a(n) = A001055(A000290(n)).

A335738 Factorize each integer m >= 2 as the product of powers of nonunit squarefree numbers with distinct exponents that are powers of 2. The sequence lists m such that the factor with the largest exponent is a power of 2.

Original entry on oeis.org

2, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 76, 80, 84, 88, 92, 96, 104, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 184, 188, 192, 204, 208, 212, 220, 224, 228, 232, 236, 240, 244, 248, 256, 260, 264, 268, 272
Offset: 1

Views

Author

Peter Munn, Jun 20 2020

Keywords

Comments

2 is the only term not divisible by 4. All powers of 2 are present. Every term divisible by an odd square is divisible by 16, the first such being 144.
The defined factorization is unique. Every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (A062503), at most one 4th power of a squarefree number (A113849), at most one 8th power of a squarefree number, and so on.
Iteratively map m using A000188, until 1 is reached, as A000188^k(m), for some k >= 1. m is in the sequence if and only if the preceding number, A000188^(k-1)(m), is 2. k can be shown to be A299090(m).
Closed under squaring, but not closed under multiplication: 12 = 3^1 * 2^2 and 432 = 3^1 * 3^2 * 2^4 are in the sequence, but 12 * 432 = 5184 = 3^4 * 2^6 = 2^2 * 6^4 is not.
The asymptotic density of this sequence is Sum_{k>=0} (d(2^(k+1)) - d(2^k))/2^(2^(k+1)-1) = 0.21363357193921052068..., where d(k) = 2^(k-1)/((2^k-1)*zeta(k)) is the asymptotic density of odd k-free numbers for k >= 2, and d(1) = 0. - Amiram Eldar, Feb 10 2024

Examples

			6 is a squarefree number, so its factorization for the definition (into powers of nonunit squarefree numbers with distinct exponents that are powers of 2) is the trivial "6^1". 6^1 is therefore the factor with the largest exponent, and is not a power of 2, so 6 is not in the sequence.
48 factorizes for the definition as 3^1 * 2^4. The factor with the largest exponent is 2^4, which is a power of 2, so 48 is in the sequence.
10^100 (a googol) factorizes in this way as 10^4 * 10^32 * 10^64. The factor with the largest exponent, 10^64, is a power of 10, not a power of 2, so 10^100 is not in the sequence.
		

Crossrefs

Complement within A020725 of A335740.
A000188, A299090 are used in a formula defining this sequence.
Powers of squarefree numbers: A005117(1), A144338(1), A062503(2), A113849(4).
Subsequences: A000079\{1}, A001749, A181818\{1}, A273798.
Numbers in the even bisection of A336322.
Row m of A352780 essentially gives the defined factorization of m.

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2, 300], FixedPointList[s, #] [[-3]] == 2 &] (* Amiram Eldar, Nov 27 2020 *)
  • PARI
    is(n) = {my(e = valuation(n, 2), o = n >> e); if(e == 0, 0, if(o == 1, n > 1, floor(logint(e, 2)) > floor(logint(vecmax(factor(o)[,2]), 2))));} \\ Amiram Eldar, Feb 10 2024

Formula

{a(n)} = {m : m >= 2 and A000188^(k-1)(m) = 2, where k = A299090(m)}.
{a(n)} = {m : m >= 2 and A352780(m,e) = 2^(2^e), where e = A299090(m)-1}. - Peter Munn, Jun 24 2022

A335740 Factorize each integer m >= 2 as the product of powers of nonunit squarefree numbers with distinct exponents that are powers of 2. The sequence lists m such that the factor with the largest exponent is not a power of 2.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90
Offset: 1

Views

Author

Peter Munn, Jun 20 2020

Keywords

Comments

Every missing number greater than 2 is a multiple of 4. Every power of 2 is missing. Every positive power of every squarefree number greater than 2 is present.
The defined factorization is unique. Every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (A062503), at most one 4th power of a squarefree number (A113849), at most one 8th power of a squarefree number, and so on.
Iteratively map m using A000188, until 1 is reached, as A000188^k(m), for some k >= 1. m is in the sequence if and only if the preceding number, A000188^(k-1)(m), is greater than 2. k can be shown to be A299090(m).
The asymptotic density of this sequence is 1 - Sum_{k>=0} (d(2^(k+1)) - d(2^k))/2^(2^(k+1)-1) = 0.78636642806078947931..., where d(k) = 2^(k-1)/((2^k-1)*zeta(k)) is the asymptotic density of odd k-free numbers for k >= 2, and d(1) = 0. - Amiram Eldar, Feb 10 2024

Examples

			6 is a squarefree number, so its factorization for the definition (into powers of nonunit squarefree numbers with distinct exponents that are powers of 2) is the trivial "6^1". 6^1 is therefore the factor with the largest exponent, and is not a power of 2, so 6 is in the sequence.
48 factorizes for the definition as 3^1 * 2^4. The factor with the largest exponent is 2^4, which is a power of 2, so 48 is not in the sequence.
10^100 (a googol) factorizes in this way as 10^4 * 10^32 * 10^64. The factor with the largest exponent, 10^64, is a power of 10, not a power of 2, so 10^100 is in the sequence.
		

Crossrefs

Complement within A020725 of A335738.
A000188, A299090 are used in a formula defining this sequence.
Powers of squarefree numbers: A005117(1), A144338(1), A062503(2), A113849(4).
Subsequences: A042968\{1,2}, A182853, A268390.
With {1}, numbers in the odd bisection of A336322.

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2, 100], FixedPointList[s, #] [[-3]] > 2 &] (* Amiram Eldar, Nov 27 2020 *)
  • PARI
    is(n) = {my(e = valuation(n, 2), o = n >> e); if(e == 0, n > 1, if(o == 1, e < 1, floor(logint(e, 2)) <= floor(logint(vecmax(factor(o)[,2]), 2))));} \\ Amiram Eldar, Feb 10 2024

Formula

{a(n)} = {m : m >= 2 and A000188^(k-1)(m) > 2, where k = A299090(m)}.

A280127 Expansion of Product_{k>=2} 1/(1 - mu(k)^2*x^k), where mu(k) is the Moebius function (A008683).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 7, 8, 11, 13, 16, 20, 24, 30, 35, 43, 52, 62, 74, 88, 104, 123, 146, 171, 201, 235, 275, 320, 373, 433, 502, 581, 672, 773, 891, 1024, 1176, 1348, 1543, 1764, 2013, 2296, 2614, 2974, 3378, 3833, 4345, 4920, 5565, 6288, 7098, 8005
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2016

Keywords

Comments

Number of partitions of n into squarefree parts > 1 (A144338).

Examples

			G.f. = 1 + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + 7*x^10 + ...
a(9) = 5 because we have [7, 2], [6, 3], [5, 2, 2], [3, 3, 3] and [3, 2, 2, 2].
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(coeff(series(mul(1/(1-mobius(k)^2*x^k),k=2..n), x,n+1),x,n),n=0..60); # Muniru A Asiru, Jul 30 2018
  • Mathematica
    nmax = 65; CoefficientList[Series[Product[1/(1 - MoebiusMu[k]^2 x^k), {k, 2, nmax}], {x, 0, nmax}], x]
  • PARI
    {a(n) = if(n < 0, 0, polcoeff( 1 / prod(k=2, n, 1 - issquarefree(k)*x^k + x*O(x^n)), n))}; /* Michael Somos, Dec 26 2016 */

Formula

G.f.: Product_{k>=2} 1/(1 - mu(k)^2*x^k).

A383211 Numbers of the form p^e where p is prime and e > 1 is squarefree.

Original entry on oeis.org

4, 8, 9, 25, 27, 32, 49, 64, 121, 125, 128, 169, 243, 289, 343, 361, 529, 729, 841, 961, 1024, 1331, 1369, 1681, 1849, 2048, 2187, 2197, 2209, 2809, 3125, 3481, 3721, 4489, 4913, 5041, 5329, 6241, 6859, 6889, 7921, 8192, 9409, 10201, 10609, 11449, 11881, 12167
Offset: 1

Views

Author

Peter Luschny, Apr 21 2025

Keywords

Crossrefs

Programs

  • Mathematica
    lmt = 12500; Sort[ Select[ Flatten[ Table[ Prime[p]^If[ SquareFreeQ@ exp, exp, 0], {p, PrimePi@ Sqrt@ lmt}, {exp, 2, Log[Prime@ p, lmt]} ]], # != 1 &]] (* Robert G. Wilson v, May 05 2025 *)
  • PARI
    isok(k) = {my(e = isprimepower(k)); e > 1 && issquarefree(e);} \\ Amiram Eldar, May 28 2025
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_log, primerange
    def A383211(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1		
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return n+x-sum(g(integer_log(x,p)[0])-1 for p in primerange(isqrt(x)+1))
        return bisection(f,n,n) # Chai Wah Wu, May 28 2025
  • SageMath
    def A383211List(upto: int) -> list[int]:
        L = []
        for p in prime_range(2, upto + 1):
            E = A383266(upto, p)
            for e in range(2, E+1):
                if is_squarefree(e):
                    n = p^e
                    if n <= upto:
                        L.append(n)
        return sorted(L)
    print(A383211List(12222))
    

Formula

Sum_{n>=1} 1/a(n) = Sum_{n>=2} P(A005117(n)) = 0.68983147577186859321..., where P(s) is the prime zeta function. - Amiram Eldar, May 28 2025

A019530 Smallest number m such that m^m is divisible by n.

Original entry on oeis.org

0, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 4, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38, 77, 78
Offset: 1

Views

Author

D. Muller (Research37(AT)aol.com)

Keywords

Comments

Numbers n such that a(n) = n are 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, ... (A144338). - Altug Alkan, Sep 30 2016
For n > 1, a(n) = A007947(n) * k for some k. Mostly, k = 1. - David A. Corneth, Sep 30 2016
For n > 1, a(n) = A007947(n) if and only if A007947(n) >= A051903(n). - Robert Israel, Sep 30 2016

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := For[m = 2, True, m++, If[PowerMod[m, m, n] == 0, Return[m]]]; Array[a, 100] (* Jean-François Alcover, Sep 30 2016 *)
    snm[n_]:=Module[{m=1},While[PowerMod[m,m,n]!=0,m++];m]; Join[{0},Array[snm,100,2]] (* Harvey P. Dale, Mar 14 2025 *)
  • PARI
    a(n)={my(f=factor(n)[,1], p=prod(i=1, #f, f[i]), i=1); if(n==1,return(0)); while(1, if(Mod(p*i,n)^(p*i)==0, return(p*i) ,i++))} \\ David A. Corneth, Sep 30 2016
    
  • PARI
    a(n)=if(n<=1,return(0)); for(m=2,n,if(Mod(m,n)^m==0,return(m))); \\ Joerg Arndt, Oct 01 2016
Showing 1-10 of 20 results. Next