A280128 Expansion of Product_{k>=2} (1 + mu(k)^2*x^k), where mu(k) is the Moebius function (A008683).
1, 0, 1, 1, 0, 2, 1, 2, 2, 2, 3, 3, 3, 5, 4, 6, 7, 7, 9, 9, 11, 13, 14, 16, 19, 18, 24, 23, 28, 31, 33, 39, 42, 46, 52, 57, 63, 71, 76, 87, 92, 103, 113, 123, 135, 149, 161, 178, 193, 210, 231, 249, 274, 298, 323, 352, 382, 414, 451, 486, 528, 572, 617, 669
Offset: 0
Keywords
Examples
G.f. = 1 + x^2 + x^3 + 2*x^5 + x^6 + 2*x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 3*x^11 + ... a(10) = 3 because we have [10], [7, 3] and [5, 3, 2].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Joerg Arndt, Matters Computational (The Fxtbook), section 16.4.3 "Partitions into square-free parts", pp.351-352
- Eric Weisstein's World of Mathematics, Squarefree
- Index entries for related partition-counting sequences
Programs
-
Maple
with(numtheory): seq(coeff(series(mul(1+mobius(k)^2*x^k,k=2..n), x,n+1),x,n),n=0..70); # Muniru A Asiru, Jul 30 2018
-
Mathematica
nmax = 75; CoefficientList[Series[Product[1 + MoebiusMu[k]^2 x^k, {k, 2, nmax}], {x, 0, nmax}], x]
-
PARI
{a(n) = if(n < 0, 0, polcoeff( prod(k=2, n, 1 + issquarefree(k)*x^k + x*O(x^n)), n))}; /* Michael Somos, Dec 26 2016 */
Formula
G.f.: Product_{k>=2} (1 + mu(k)^2*x^k).
Comments