cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A273013 Number of different arrangements of nonnegative integers on a pair of n-sided dice such that the dice can add to any integer from 0 to n^2-1.

Original entry on oeis.org

1, 1, 1, 3, 1, 7, 1, 10, 3, 7, 1, 42, 1, 7, 7, 35, 1, 42, 1, 42, 7, 7, 1, 230, 3, 7, 10, 42, 1, 115, 1, 126, 7, 7, 7, 393, 1, 7, 7, 230, 1, 115, 1, 42, 42, 7, 1, 1190, 3, 42, 7, 42, 1, 230, 7, 230, 7, 7, 1, 1158, 1, 7, 42, 462, 7, 115, 1, 42, 7, 115, 1, 3030
Offset: 1

Views

Author

Elliott Line, May 13 2016

Keywords

Comments

The set of b values (see formula), and therefore also a(n), depends only on the prime signature of n. So, for example, a(24) will be identical to a(n) of any other n which is also of the form p_1^3*p_2, (e.g., 40, 54, 56).
The value of b_1 will always be 1. When n is prime, the only nonzero b will be b_1, so therefore a(n) will be 1.
In any arrangement, both dice will have a 0, and one will have a 1 (here called the lead die). To determine any one of the actual arrangements to numbers on the dice, select one of the permutations of divisors (for the lead die), then select another permutation that is either the same length as that of the lead die, or one less. For example, if n = 12, we might select 2*3*2 for the lead die, and 3*4 for the second die. These numbers effectively tell you when to "switch track" when numbering the dice, and will uniquely result in the numbering: (0,1,6,7,12,13,72,73,78,79,84,85; 0,2,4,18,20,22,36,38,40,54,56,58).
a(n) is the number of (unordered) pairs of polynomials c(x) = x^c_1 + x^c_2 + ... + x^c_n, d(x) = x^d_1 + x^d_2 + ... + x^d_n with nonnegative integer exponents such that c(x)*d(x) = (x^(n^2)-1)/(x-1). - Alois P. Heinz, May 13 2016
a(n) is also the number of principal reversible squares of order n. - S. Harry White, May 19 2018
From Gus Wiseman, Oct 29 2021: (Start)
Also the number of ordered factorizations of n^2 with alternating product 1. This follows from the author's formula. Taking n instead of n^2 gives a(sqrt(n)) if n is a perfect square, otherwise 0. Here, an ordered factorization of n is a sequence of positive integers > 1 with product n, and the alternating product of a sequence (y_1,...,y_k) is Product_i y_i^((-1)^(i-1)). For example, the a(1) = 1 through a(9) = 3 factorizations are:
() (22) (33) (44) (55) (66) (77) (88) (99)
(242) (263) (284) (393)
(2222) (362) (482) (3333)
(2233) (2244)
(2332) (2442)
(3223) (4224)
(3322) (4422)
(22242)
(24222)
(222222)
The even-length case is A347464.
(End)

Examples

			When n = 4, a(n) = 3; the three arrangements are (0,1,2,3; 0,4,8,12), (0,1,4,5; 0,2,8,10), (0,1,8,9; 0,2,4,6).
When n = 5, a(n) = 1; the sole arrangement is (0,1,2,3,4; 0,5,10,15,20).
		

Crossrefs

Positions of 1's are 1 and A000040.
A000290 lists squares, complement A000037.
A001055 counts factorizations, ordered A074206.
A119620 counts partitions with alternating product 1, ranked by A028982.
A339846 counts even-length factorizations, ordered A174725.
A339890 counts odd-length factorizations, ordered A174726.
A347438 counts factorizations with alternating product 1.
A347460 counts possible alternating products of factorizations.
A347463 counts ordered factorizations with integer alternating product.
A347466 counts factorizations of n^2.

Programs

  • Mathematica
    facs[n_] := If[n <= 1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@# >= d&]], {d, Rest[Divisors[n]]}]];
    altprod[q_] := Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
    Table[Length[Select[Join@@Permutations/@facs[n^2], altprod[#] == 1&]],{n, 30}]
    (* Gus Wiseman, Oct 29 2021 *)
    (* or *)
    ofc[n_,k_] := If[k > PrimeOmega[n], 0, If[k == 0 && n == 1, 1, Sum[ofc[n/d, k-1],{d, Rest[Divisors[n]]}]]];
    Table[If[n == 1, 1, Sum[ofc[n, x]^2 + ofc[n, x]*ofc[n, x+1], {x, n}]],{n, 30}]
    (* Gus Wiseman, Oct 29 2021, based on author's formula *)
  • PARI
    A273013aux(n, k=0, t=1) = if(1==n, (1==t), my(s=0); fordiv(n, d, if((d>1), s += A273013aux(n/d, 1-k, t*(d^((-1)^k))))); (s));
    A273013(n) = A273013aux(n^2); \\ Antti Karttunen, Oct 30 2021
    
  • SageMath
    @cached_function
    def r(m,n):
        if n==1:
            return(1)
        divList = divisors(m)[:-1]
        return(sum(r(n,d) for d in divList))
    def A273013(n):
        return(r(n,n)) # William P. Orrick, Feb 19 2023

Formula

a(n) = b_1^2 + b_2^2 + b_3^2 + ... + b_1*b_2 + b_2*b_3 + b_3*b_4 + ..., where b_k is the number of different permutations of k divisors of n to achieve a product of n. For example, for n=24, b_3 = 9 (6 permutations of 2*3*4 and 3 permutations of 2*2*6).
a(n) = r(n,n) where r(m,1) = 1 and r(m,n) = Sum_{d|m,dWilliam P. Orrick, Feb 19 2023

A347443 Number of integer partitions of n with reverse-alternating product <= 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 10, 12, 19, 22, 34, 40, 60, 69, 101, 118, 168, 195, 272, 317, 434, 505, 679, 793, 1050, 1224, 1599, 1867, 2409, 2811, 3587, 4186, 5290, 6168, 7724, 9005, 11186, 13026, 16062, 18692, 22894, 26613, 32394, 37619, 45535, 52815, 63593, 73680
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

Includes all partitions of even length (A027187).
Also the number of integer partitions of n with reverse-alternating sum <= 1.
Also the number of integer partitions of n having either even length (A027187) or having exactly one odd part in the conjugate partition (A100824).
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (2111)   (2211)    (331)      (71)
                            (11111)  (3111)    (2221)     (2222)
                                     (111111)  (3211)     (3221)
                                               (4111)     (3311)
                                               (22111)    (4211)
                                               (211111)   (5111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The odd-length case is A035363 (shifted).
The strict case is A067661.
The non-reverse version is counted by A119620, ranked by A347466.
The even bisection is A236913.
The opposite version (>= instead of <=) is A344607.
The case of < 1 instead of <= 1 is A344608.
The multiplicative version (factorizations) is A347438, non-reverse A339846.
Allowing any integer reverse-alternating product gives A347445.
The complement (> 1 instead of <= 1) is counted by A347449.
Ranked by A347465, non-reverse A347450.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A058622 counts compositions with alternating sum <= 0 (A294175 for < 0).
A100824 counts partitions with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]<=1&]],{n,0,30}]

Formula

a(n) = A027187(n) + A035363(n-1) for n >= 1. [Corrected by Georg Fischer, Dec 13 2022]
a(n) = A119620(n) + A344608(n).

A347458 Number of factorizations of n^2 with integer alternating product.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 17, 2, 6, 6, 15, 2, 17, 2, 16, 6, 6, 2, 41, 4, 6, 8, 16, 2, 31, 2, 27, 6, 6, 6, 56, 2, 6, 6, 39, 2, 31, 2, 17, 17, 6, 2, 90, 4, 17, 6, 17, 2, 41, 6, 39, 6, 6, 2, 105, 2, 6, 17, 48, 6, 31, 2, 17, 6, 31, 2, 148, 2, 6, 17, 17, 6, 32, 2, 86, 15, 6, 2, 107, 6, 6, 6, 40, 2, 109, 6, 17
Offset: 1

Views

Author

Gus Wiseman, Sep 21 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
The even-length case, the case of alternating product 1, and the case of alternating sum 0 are all counted by A001055.

Examples

			The a(2) = 2 through a(8) = 8 factorizations:
  4     9     16        25    36        49    64
  2*2   3*3   4*4       5*5   6*6       7*7   8*8
              2*2*4           2*2*9           2*4*8
              2*2*2*2         2*3*6           4*4*4
                              3*3*4           2*2*16
                              2*2*3*3         2*2*4*4
                                              2*2*2*2*4
                                              2*2*2*2*2*2
		

Crossrefs

Positions of 2's are A000040, squares A001248.
The restriction to powers of 2 is A344611.
This is the restriction to perfect squares of A347437.
The nonsquared even-length version is A347438.
The reciprocal version is A347459, non-squared A347439.
The additive version (partitions) is the even bisection of A347446.
The nonsquared ordered version is A347463.
The case of alternating product 1 in the ordered version is A347464.
Allowing any alternating product gives A347466.
A000290 lists squares, complement A000037.
A001055 counts factorizations.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors of n (reverse: A071322).
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347457 ranks partitions with integer alternating product.
Apparently, A006881 gives the positions of 6's. - Antti Karttunen, Oct 22 2023

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n^2],IntegerQ[altprod[#]]&]],{n,100}]
  • PARI
    A347437(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if((d>1)&&(d<=m), A347437(n/d, d, ap * d^((-1)^e), 1-e))));
    A347458(n) = A347437(n*n); \\ Antti Karttunen, Oct 22 2023

Formula

a(2^n) = A344611(n).
a(n) = A347437(n^2).

Extensions

Data section extended up to a(92) by Antti Karttunen, Oct 22 2023

A347459 Number of factorizations of n^2 with integer reciprocal alternating product.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 6, 3, 4, 1, 11, 1, 4, 4, 12, 1, 11, 1, 12, 4, 4, 1, 28, 3, 4, 6, 12, 1, 19, 1, 22, 4, 4, 4, 38, 1, 4, 4, 29, 1, 21, 1, 12, 11, 4, 1, 65, 3, 11, 4, 12, 1, 29, 4, 29, 4, 4, 1, 71, 1, 4, 11, 40, 4, 22, 1, 12, 4, 18, 1, 107, 1, 4, 11, 12, 4, 22, 1, 66, 12, 4, 1, 76, 4, 4, 4, 30, 1, 71, 4, 12, 4, 4, 4, 141
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2021

Keywords

Comments

We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
All such factorizations have even length.
Image appears to be 1, 3, 4, 6, 11, ... , missing some numbers such as 2, 5, 7, 8, 9, ...
The case of alternating product 1, the case of alternating sum 0, and the reverse version are all counted by A001055.

Examples

			The a(2) = 1 through a(10) = 4 factorizations:
    2*2  3*3  2*8      5*5  6*6      7*7  8*8          9*9      2*50
              4*4           2*18          2*32         3*27     5*20
              2*2*2*2       3*12          4*16         3*3*3*3  10*10
                            2*2*3*3       2*2*2*8               2*2*5*5
                                          2*2*4*4
                                          2*2*2*2*2*2
		

Crossrefs

Positions of 1's are 1 and A000040, squares A001248.
The additive version (partitions) is A000041, the even bisection of A119620.
Partitions of this type are ranked by A028982 and A347451.
The restriction to powers of 2 is A236913, the even bisection of A027187.
The nonsquared nonreciprocal even-length version is A347438.
This is the restriction to perfect squares of A347439.
The nonreciprocal version is A347458, non-squared A347437.
A000290 lists squares, complement A000037.
A001055 counts factorizations.
A046099 counts factorizations with no alternating permutations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347457 ranks partitions with integer alternating product.
A347466 counts factorizations of n^2.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    recaltprod[q_]:=Product[q[[i]]^(-1)^i,{i,Length[q]}];
    Table[Length[Select[facs[n^2],IntegerQ[recaltprod[#]]&]],{n,100}]
  • PARI
    A347439(n, m=n, ap=1, e=0) = if(1==n, !(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1 && d<=m, A347439(n/d, d, ap * d^((-1)^e), 1-e))));
    A347459(n) = A347439(n^2); \\ Antti Karttunen, Jul 28 2024

Formula

a(2^n) = A236913(n).
a(n) = A347439(n^2).

Extensions

Data section extended up to a(96) by Antti Karttunen, Jul 28 2024

A347705 Number of factorizations of n with reverse-alternating product > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 7, 1, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 7, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 1, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 8, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 3, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 12 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(n) factorizations for n = 2, 6, 8, 12, 24, 30, 48, 60:
  2   6     8       12      24        30      48          60
      2*3   2*4     2*6     3*8       5*6     6*8         2*30
            2*2*2   3*4     4*6       2*15    2*24        3*20
                    2*2*3   2*12      3*10    3*16        4*15
                            2*2*6     2*3*5   4*12        5*12
                            2*3*4             2*3*8       6*10
                            2*2*2*3           2*4*6       2*5*6
                                              3*4*4       3*4*5
                                              2*2*12      2*2*15
                                              2*2*2*6     2*3*10
                                              2*2*3*4     2*2*3*5
                                              2*2*2*2*3
		

Crossrefs

Positions of 1's are A000430.
The weak version (>= instead of >) is A001055, non-reverse A347456.
The non-reverse version is A339890, strict A347447.
The version for reverse-alternating product 1 is A347438.
Allowing any integer reciprocal alternating product gives A347439.
The even-length case is A347440, also the opposite reverse version.
Allowing any integer rev-alt product gives A347442, non-reverse A347437.
The version for partitions is A347449, non-reverse A347448.
A001055 counts factorizations (strict A045778, ordered A074206).
A038548 counts possible rev-alt products of factorizations, integer A046951.
A103919 counts partitions by sum and alternating sum, reverse A344612.
A292886 counts knapsack factorizations, by sum A293627.
A347707 counts possible integer reverse-alternating products of partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    revaltprod[q_]:=Product[q[[-i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],revaltprod[#]>1&]],{n,100}]

Formula

a(n) = A001055(n) - A347438(n).

A347464 Number of even-length ordered factorizations of n^2 into factors > 1 with alternating product 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 5, 1, 6, 2, 5, 1, 26, 1, 5, 5, 20, 1, 26, 1, 26, 5, 5, 1, 134, 2, 5, 6, 26, 1, 73, 1, 70, 5, 5, 5, 230, 1, 5, 5, 134, 1, 73, 1, 26, 26, 5, 1, 670, 2, 26, 5, 26, 1, 134, 5, 134, 5, 5, 1, 686, 1, 5, 26, 252, 5, 73, 1, 26, 5, 73, 1, 1714, 1, 5, 26
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2021

Keywords

Comments

An ordered factorization of n is a sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also the number of ordered pairs of ordered factorizations of n, both of the same length.
Note that the version for all n (not just squares) is 0 except at perfect squares.

Examples

			The a(12) = 26 ordered factorizations:
  (2*2*6*6)      (3*2*4*6)      (6*2*2*6)  (4*2*3*6)  (12*12)
  (2*3*6*4)      (3*3*4*4)      (6*3*2*4)  (4*3*3*4)
  (2*4*6*3)      (3*4*4*3)      (6*4*2*3)  (4*4*3*3)
  (2*6*6*2)      (3*6*4*2)      (6*6*2*2)  (4*6*3*2)
  (2*2*2*2*3*3)  (3*2*2*2*2*3)
  (2*2*2*3*3*2)  (3*2*2*3*2*2)
  (2*2*3*2*2*3)  (3*3*2*2*2*2)
  (2*2*3*3*2*2)
  (2*3*2*2*3*2)
  (2*3*3*2*2*2)
For example, the ordered factorization 6*3*2*4 = 144 has alternating product 6/3*2/4 = 1, so is counted under a(12).
		

Crossrefs

Positions of 1's are A008578 (1 and A000040).
The restriction to powers of 2 is A000984.
Positions of 2's are A001248.
The not necessarily even-length version is A273013.
A000290 lists squares, complement A000037.
A001055 counts factorizations.
A027187 counts even-length partitions.
A074206 counts ordered factorizations.
A119620 counts partitions with alternating product 1, ranked by A028982.
A339846 counts even-length factorizations, ordered A347706.
A347438 counts factorizations with alternating product 1.
A347457 ranks partitions with integer alternating product.
A347460 counts possible alternating products of factorizations.
A347466 counts factorizations of n^2.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[Join@@Permutations/@facs[n^2],EvenQ[Length[#]]&&altprod[#]==1&]],{n,100}]
  • PARI
    A347464aux(n, k=0, t=1) = if(1==n, (0==k)&&(1==t), my(s=0); fordiv(n, d, if((d>1), s += A347464aux(n/d, 1-k, t*(d^((-1)^k))))); (s));
    A347464(n) = A347464aux(n^2); \\ Antti Karttunen, Oct 30 2021

A348611 Number of ordered factorizations of n with no adjacent equal factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 14, 1, 3, 3, 6, 1, 13, 1, 7, 3, 3, 3, 17, 1, 3, 3, 14, 1, 13, 1, 6, 6, 3, 1, 29, 1, 6, 3, 6, 1, 14, 3, 14, 3, 3, 1, 36, 1, 3, 6, 14, 3, 13, 1, 6, 3, 13, 1, 45, 1, 3, 6, 6, 3, 13, 1, 29, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 07 2021

Keywords

Comments

First differs from A348610 at a(24) = 14, A348610(24) = 12.
An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
In analogy with Carlitz compositions, these may be called Carlitz ordered factorizations.

Examples

			The a(n) ordered factorizations without adjacent equal factors for n = 1, 6, 12, 16, 24, 30, 32, 36 are:
  ()   6     12      16      24      30      32      36
       2*3   2*6     2*8     3*8     5*6     4*8     4*9
       3*2   3*4     8*2     4*6     6*5     8*4     9*4
             4*3     2*4*2   6*4     10*3    16*2    12*3
             6*2             8*3     15*2    2*16    18*2
             2*3*2           12*2    2*15    2*8*2   2*18
                             2*12    3*10    4*2*4   3*12
                             2*3*4   2*3*5           2*3*6
                             2*4*3   2*5*3           2*6*3
                             2*6*2   3*2*5           2*9*2
                             3*2*4   3*5*2           3*2*6
                             3*4*2   5*2*3           3*4*3
                             4*2*3   5*3*2           3*6*2
                             4*3*2                   6*2*3
                                                     6*3*2
                                                     2*3*2*3
                                                     3*2*3*2
Thus, of total A074206(12) = 8 ordered factorizations of 12, only factorizations 2*2*3 and 3*2*2 (see A348616) are not included in this count, therefore a(12) = 6. - _Antti Karttunen_, Nov 12 2021
		

Crossrefs

The additive version (compositions) is A003242, complement A261983.
The additive alternating version is A025047, ranked by A345167.
Factorizations without a permutation of this type are counted by A333487.
As compositions these are ranked by A333489, complement A348612.
Factorizations with a permutation of this type are counted by A335434.
The non-alternating additive version is A345195, ranked by A345169.
The alternating case is A348610, which is dominated at positions A122181.
The complement is counted by A348616.
A001055 counts factorizations, strict A045778, ordered A074206.
A325534 counts separable partitions, ranked by A335433.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A348613 counts non-alternating ordered factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    antirunQ[y_]:=Length[y]==Length[Split[y]]
    Table[Length[Select[ordfacs[n],antirunQ]],{n,100}]
  • PARI
    A348611(n, e=0) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d!=e), s += A348611(n/d, d))); (s)); \\ Antti Karttunen, Nov 12 2021

Formula

a(n) = A074206(n) - A348616(n).
Showing 1-7 of 7 results.