cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A347437 Number of factorizations of n with integer alternating product.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 8, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 6, 1, 2, 2, 6, 1, 1, 1, 2, 1, 1, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Sep 06 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The factorizations for n = 4, 16, 36, 48, 54, 64, 108:
  (4)   (16)      (36)      (48)        (54)    (64)          (108)
  (2*2) (4*4)     (6*6)     (2*4*6)     (2*3*9) (8*8)         (2*6*9)
        (2*2*4)   (2*2*9)   (3*4*4)     (3*3*6) (2*4*8)       (3*6*6)
        (2*2*2*2) (2*3*6)   (2*2*12)            (4*4*4)       (2*2*27)
                  (3*3*4)   (2*2*2*2*3)         (2*2*16)      (2*3*18)
                  (2*2*3*3)                     (2*2*4*4)     (3*3*12)
                                                (2*2*2*2*4)   (2*2*3*3*3)
                                                (2*2*2*2*2*2)
		

Crossrefs

Positions of 1's are A005117, complement A013929.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The restriction to powers of 2 is A344607.
The even-length case is A347438, also the case of alternating product 1.
The reciprocal version is A347439.
Allowing any alternating product < 1 gives A347440.
The odd-length case is A347441.
The reverse version is A347442.
The additive version is A347446, ranked by A347457.
Allowing any alternating product >= 1 gives A347456.
The restriction to perfect squares is A347458, reciprocal A347459.
The ordered version is A347463.
A001055 counts factorizations.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors of n (reverse: A071322).
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],IntegerQ@*altprod]],{n,100}]
  • PARI
    A347437(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if((d>1)&&(d<=m), A347437(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023

Formula

a(2^n) = A344607(n).
a(n^2) = A347458(n).

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 22 2023

A347439 Number of factorizations of n with integer reciprocal alternating product.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 6, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 5
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2021

Keywords

Comments

All of these factorizations have an even number of factors, so their reverse-alternating product is also an integer.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
The value of a(n) does not depend solely on the prime signature of n. See the example comparing a(144) and a(400). - Antti Karttunen, Jul 28 2024

Examples

			The a(n) factorizations for
n    = 16,       36,       64,           72,       128,          144:
a(n) = 3,        4,        6,            5,        7,            11
--------------------------------------------------------------------------------
       2*8       6*6       8*8           2*36      2*64          2*72
       4*4       2*18      2*32          3*24      4*32          3*48
       2*2*2*2   3*12      4*16          6*12      8*16          4*36
                 2*2*3*3   2*2*2*8       2*2*3*6   2*2*4*8       6*24
                           2*2*4*4       2*3*3*4   2*4*4*4       12*12
                           2*2*2*2*2*2             2*2*2*16      2*2*6*6
                                                   2*2*2*2*2*4   2*3*3*8
                                                                 3*3*4*4
                                                                 2*2*2*18
                                                                 2*2*3*12
                                                                 2*2*2*2*3*3
From _Antti Karttunen_, Jul 28 2024 (Start)
For n=400, there are 12 such factorizations:
  2*200
  4*100
  5*80
  10*40
  20*20
  2*2*2*50
  2*2*5*20
  2*2*10*10
  2*4*5*10
  2*5*5*8
  4*4*5*5
  2*2*2*2*5*5.
Note that 400 = 2^4 * 5^2 has the same prime signature as 144 = 2^4 * 3^2. 400 = 2*4*5*10 is the factorization for which there is no analogous factorization of 144, as 2*3*4*6 doesn't satisfy the condition of having an integer reciprocal alternating product.
(End)
		

Crossrefs

Positions of 0's are A005117 \ {1}.
Positions of non-0's are 1 and A013929.
The restriction to powers of 2 is A027187, reverse A035363.
Positions of 1's are 1 and A082293.
The additive version is A119620, ranked by A347451 and A028982.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The non-reciprocal version is A347437.
The reverse version is A347438.
Allowing any alternating product < 1 gives A347440.
The non-reciprocal reverse version is A347442.
Allowing any alternating product >= 1 gives A347456.
The restriction to perfect squares is A347459, non-reciprocal A347458.
A038548 counts possible reverse-alternating products of factorizations.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347441 counts odd-length factorizations with integer alternating product.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    recaltprod[q_]:=Product[q[[i]]^(-1)^i,{i,Length[q]}];
    Table[Length[Select[facs[n],IntegerQ[recaltprod[#]]&]],{n,100}]
  • PARI
    A347439(n, m=n, ap=1, e=0) = if(1==n, !(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1 && d<=m, A347439(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
    
  • PARI
    A347439(n, m=0, ap=1, e=1) = if(1==n, 1==denominator(ap), sumdiv(n, d, if(d>1 && d>=m, A347439(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024

Formula

a(2^n) = A027187(n).
a(n^2) = A347459(n).

Extensions

Data section extended up to a(108) by Antti Karttunen, Jul 28 2024

A347442 Number of factorizations of n with integer reverse-alternating product.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 3, 2, 1, 3, 3, 1, 1, 1, 7, 1, 1, 1, 8, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 8, 2, 3, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 3, 11, 1, 1, 1, 3, 1, 1, 1, 11, 1, 1, 3, 3, 1, 1, 1, 8, 5, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 9, 1, 3, 3, 8, 1, 1, 1, 3, 1, 1, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Sep 08 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(n) factorizations for n = 4, 8, 16, 32, 36, 54, 64:
  (4)    (8)      (16)       (32)         (36)       (54)     (64)
  (2*2)  (2*4)    (2*8)      (4*8)        (6*6)      (3*18)   (8*8)
         (2*2*2)  (4*4)      (2*16)       (2*18)     (2*3*9)  (2*32)
                  (2*2*4)    (2*2*8)      (3*12)     (3*3*6)  (4*16)
                  (2*2*2*2)  (2*4*4)      (2*2*9)             (2*4*8)
                             (2*2*2*4)    (2*3*6)             (4*4*4)
                             (2*2*2*2*2)  (3*3*4)             (2*2*16)
                                          (2*2*3*3)           (2*2*2*8)
                                                              (2*2*4*4)
                                                              (2*2*2*2*4)
                                                              (2*2*2*2*2*2)
		

Crossrefs

The restriction to powers of 2 is A000041, reverse A344607.
Positions of 2's are A001248.
Positions of 1's are A005117.
Positions of non-1's are A013929.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The non-reverse version is A347437.
The reciprocal version is A347438.
The even-length case is A347439.
Allowing any alternating product < 1 gives A347440.
The odd-length case is A347441, ranked by A347453.
The additive version is A347445, ranked by A347457.
The non-reverse additive version is A347446, ranked by A347454.
Allowing any alternating product >= 1 gives A347456.
The ordered version is A347463.
A038548 counts possible reverse-alternating products of factorizations.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A273013 counts ordered factorizations of n^2 with alternating product 1.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],IntegerQ@*revaltprod]],{n,100}]
  • PARI
    A347442(n, m=n, ap=1, e=0) = if(1==n, 1==denominator(ap), sumdiv(n, d, if((d>1)&&(d<=m), A347442(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023

Formula

a(2^n) = A000041(n).

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 22 2023

A347463 Number of ordered factorizations of n with integer alternating product.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 7, 1, 4, 1, 4, 1, 1, 1, 6, 2, 1, 3, 4, 1, 1, 1, 11, 1, 1, 1, 18, 1, 1, 1, 6, 1, 1, 1, 4, 4, 1, 1, 20, 2, 4, 1, 4, 1, 6, 1, 6, 1, 1, 1, 8, 1, 1, 4, 26, 1, 1, 1, 4, 1, 1, 1, 35, 1, 1, 4, 4, 1, 1, 1, 20, 7, 1, 1, 8, 1, 1, 1, 6, 1, 8, 1, 4, 1, 1, 1, 32, 1, 4, 4, 18
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2021

Keywords

Comments

An ordered factorization of n is a sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The ordered factorizations for n = 4, 8, 12, 16, 24, 32, 36:
  4     8       12      16        24      32          36
  2*2   4*2     6*2     4*4       12*2    8*4         6*6
        2*2*2   2*2*3   8*2       2*2*6   16*2        12*3
                3*2*2   2*2*4     3*2*4   2*2*8       18*2
                        2*4*2     4*2*3   2*4*4       2*2*9
                        4*2*2     6*2*2   4*2*4       2*3*6
                        2*2*2*2           4*4*2       2*6*3
                                          8*2*2       3*2*6
                                          2*2*4*2     3*3*4
                                          4*2*2*2     3*6*2
                                          2*2*2*2*2   4*3*3
                                                      6*2*3
                                                      6*3*2
                                                      9*2*2
                                                      2*2*3*3
                                                      2*3*3*2
                                                      3*2*2*3
                                                      3*3*2*2
		

Crossrefs

Positions of 2's are A001248.
Positions of 1's are A005117.
The restriction to powers of 2 is A116406.
The even-length case is A347048
The odd-length case is A347049.
The unordered version is A347437, reciprocal A347439, reverse A347442.
The case of partitions is A347446, reverse A347445, ranked by A347457.
A001055 counts factorizations (strict A045778, ordered A074206).
A046099 counts factorizations with no alternating permutations.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A339846 counts even-length factorizations, ordered A174725.
A339890 counts odd-length factorizations, ordered A174726.
A347438 counts factorizations with alternating product 1.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[Join@@Permutations/@facs[n],IntegerQ[altprod[#]]&]],{n,100}]
  • PARI
    A347463(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if(d>1, A347463(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024

Formula

a(n) = A347048(n) + A347049(n).

Extensions

Data section extended up to a(100) by Antti Karttunen, Jul 28 2024

A348380 Number of factorizations of n without an alternating permutation. Includes all twins (x*x).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

First differs from A333487 at a(216) = 4, A333487(216) = 3.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(n) factorizations for n = 96, 144, 192, 384:
  (2*2*2*12)     (12*12)        (3*4*4*4)        (4*4*4*6)
  (2*2*2*2*6)    (2*2*2*18)     (2*2*2*24)       (2*2*2*48)
  (2*2*2*2*2*3)  (2*2*2*2*9)    (2*2*2*2*12)     (2*2*2*2*24)
                 (2*2*2*2*3*3)  (2*2*2*2*2*6)    (2*2*2*2*3*8)
                                (2*2*2*2*3*4)    (2*2*2*2*4*6)
                                (2*2*2*2*2*2*3)  (2*2*2*2*2*12)
                                                 (2*2*2*2*2*2*6)
                                                 (2*2*2*2*2*3*4)
                                                 (2*2*2*2*2*2*2*3)
		

Crossrefs

The inseparable case is A333487, complement A335434, without twins A348381.
Non-twin partitions of this type are counted by A344654, ranked by A344653.
Twins and partitions not of this type are counted by A344740, ranked by A344742.
Partitions of this type are counted by A345165, ranked by A345171.
Partitions not of this type are counted by A345170, ranked by A345172.
The case without twins is A347706.
The complement is counted by A348379, with twins A347050.
Numbers with a factorization of this type are A348609.
An ordered version is A348613, complement A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A325535 counts inseparable partitions, ranked by A335448.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[facs[n],Select[Permutations[#],wigQ]=={}&]],{n,100}]

Formula

a(2^n) = A345165(n).

A347050 Number of factorizations of n that are a twin (x*x) or have an alternating permutation.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 15 2021

Keywords

Comments

First differs from A348383 at a(216) = 27, A348383(216) = 28.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
These permutations are ordered factorizations of n with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
The version without twins for n > 0 is a(n) + 1 if n is a perfect square; otherwise a(n).

Examples

			The factorizations for n = 4, 12, 24, 30, 36, 48, 60, 64, 72:
  4    12     24     30     36       48       60       64       72
  2*2  2*6    3*8    5*6    4*9      6*8      2*30     8*8      8*9
       3*4    4*6    2*15   6*6      2*24     3*20     2*32     2*36
       2*2*3  2*12   3*10   2*18     3*16     4*15     4*16     3*24
              2*2*6  2*3*5  3*12     4*12     5*12     2*4*8    4*18
              2*3*4         2*2*9    2*3*8    6*10     2*2*16   6*12
                            2*3*6    2*4*6    2*5*6    2*2*4*4  2*4*9
                            3*3*4    3*4*4    3*4*5             2*6*6
                            2*2*3*3  2*2*12   2*2*15            3*3*8
                                     2*2*3*4  2*3*10            3*4*6
                                              2*2*3*5           2*2*18
                                                                2*3*12
                                                                2*2*3*6
                                                                2*3*3*4
                                                                2*2*2*3*3
The a(270) = 19 factorizations:
  (2*3*5*9)   (5*6*9)   (3*90)   (270)
  (3*3*5*6)   (2*3*45)  (5*54)
  (2*3*3*15)  (2*5*27)  (6*45)
              (2*9*15)  (9*30)
              (3*3*30)  (10*27)
              (3*5*18)  (15*18)
              (3*6*15)  (2*135)
              (3*9*10)
Note that (2*3*3*3*5) is separable but has no alternating permutations.
		

Crossrefs

Partitions not of this type are counted by A344654, ranked by A344653.
Partitions of this type are counted by A344740, ranked by A344742.
The complement is counted by A347706, without twins A348380.
The case without twins is A348379.
Dominates A348383, the separable case.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A008480 counts permutations of prime indices, strict A335489.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Function[f,Select[Permutations[f],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}]]],{n,100}]

Formula

For n > 1, a(n) = A335434(n) + A010052(n).

A347441 Number of odd-length factorizations of n with integer alternating product.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 5, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 2, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 6, 1, 2, 2, 4, 1, 1, 1, 2, 1, 1, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(n) factorizations for n = 2, 8, 32, 48, 54, 72, 108:
  2   8       32          48          54      72          108
      2*2*2   2*2*8       2*4*6       2*3*9   2*6*6       2*6*9
              2*4*4       3*4*4       3*3*6   3*3*8       3*6*6
              2*2*2*2*2   2*2*12              2*2*18      2*2*27
                          2*2*2*2*3           2*3*12      2*3*18
                                              2*2*2*3*3   3*3*12
                                                          2*2*3*3*3
		

Crossrefs

The restriction to powers of 2 is A027193.
Positions of 1's are A167207 = A005117 \/ A001248.
Allowing any alternating product gives A339890.
Allowing even-length factorizations gives A347437.
The even-length instead of odd-length version is A347438.
The additive version is A347444, ranked by A347453.
A038548 counts possible reverse-alternating products of factorizations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A339846 counts even-length factorizations.
A347439 counts factorizations with integer reciprocal alternating product.
A347440 counts factorizations with alternating product < 1.
A347442 counts factorizations with integer reverse-alternating product.
A347456 counts factorizations with alternating product >= 1.
A347463 counts ordered factorizations with integer alternating product.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
  • PARI
    A347441(n, m=n, ap=1, e=0) = if(1==n, (e%2)&&1==denominator(ap), sumdiv(n, d, if((d>1)&&(d<=m), A347441(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023

Formula

a(2^n) = A027193(n).

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 22 2023

A347459 Number of factorizations of n^2 with integer reciprocal alternating product.

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 6, 3, 4, 1, 11, 1, 4, 4, 12, 1, 11, 1, 12, 4, 4, 1, 28, 3, 4, 6, 12, 1, 19, 1, 22, 4, 4, 4, 38, 1, 4, 4, 29, 1, 21, 1, 12, 11, 4, 1, 65, 3, 11, 4, 12, 1, 29, 4, 29, 4, 4, 1, 71, 1, 4, 11, 40, 4, 22, 1, 12, 4, 18, 1, 107, 1, 4, 11, 12, 4, 22, 1, 66, 12, 4, 1, 76, 4, 4, 4, 30, 1, 71, 4, 12, 4, 4, 4, 141
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2021

Keywords

Comments

We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
All such factorizations have even length.
Image appears to be 1, 3, 4, 6, 11, ... , missing some numbers such as 2, 5, 7, 8, 9, ...
The case of alternating product 1, the case of alternating sum 0, and the reverse version are all counted by A001055.

Examples

			The a(2) = 1 through a(10) = 4 factorizations:
    2*2  3*3  2*8      5*5  6*6      7*7  8*8          9*9      2*50
              4*4           2*18          2*32         3*27     5*20
              2*2*2*2       3*12          4*16         3*3*3*3  10*10
                            2*2*3*3       2*2*2*8               2*2*5*5
                                          2*2*4*4
                                          2*2*2*2*2*2
		

Crossrefs

Positions of 1's are 1 and A000040, squares A001248.
The additive version (partitions) is A000041, the even bisection of A119620.
Partitions of this type are ranked by A028982 and A347451.
The restriction to powers of 2 is A236913, the even bisection of A027187.
The nonsquared nonreciprocal even-length version is A347438.
This is the restriction to perfect squares of A347439.
The nonreciprocal version is A347458, non-squared A347437.
A000290 lists squares, complement A000037.
A001055 counts factorizations.
A046099 counts factorizations with no alternating permutations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347457 ranks partitions with integer alternating product.
A347466 counts factorizations of n^2.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    recaltprod[q_]:=Product[q[[i]]^(-1)^i,{i,Length[q]}];
    Table[Length[Select[facs[n^2],IntegerQ[recaltprod[#]]&]],{n,100}]
  • PARI
    A347439(n, m=n, ap=1, e=0) = if(1==n, !(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1 && d<=m, A347439(n/d, d, ap * d^((-1)^e), 1-e))));
    A347459(n) = A347439(n^2); \\ Antti Karttunen, Jul 28 2024

Formula

a(2^n) = A236913(n).
a(n) = A347439(n^2).

Extensions

Data section extended up to a(96) by Antti Karttunen, Jul 28 2024

A348383 Number of factorizations of n that are either separable (have an anti-run permutation) or are a twin (x*x).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

First differs from A347050 at a(216) = 28, A347050(216) = 27.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of the remaining multiplicities plus one.

Examples

			The a(216) = 28 factorizations:
  (2*2*2*3*3*3)  (2*2*2*3*9)  (2*2*6*9)   (3*8*9)   (3*72)   (216)
                 (2*2*3*3*6)  (2*3*4*9)   (4*6*9)   (4*54)
                 (2*3*3*3*4)  (2*3*6*6)   (2*2*54)  (6*36)
                              (3*3*4*6)   (2*3*36)  (8*27)
                              (2*2*3*18)  (2*4*27)  (9*24)
                              (2*3*3*12)  (2*6*18)  (12*18)
                                          (2*9*12)  (2*108)
                                          (3*3*24)
                                          (3*4*18)
                                          (3*6*12)
The a(270) = 20 factorizations:
  (2*3*3*3*5)  (2*3*5*9)   (5*6*9)   (3*90)   (270)
               (3*3*5*6)   (2*3*45)  (5*54)
               (2*3*3*15)  (2*5*27)  (6*45)
                           (2*9*15)  (9*30)
                           (3*3*30)  (10*27)
                           (3*5*18)  (15*18)
                           (3*6*15)  (2*135)
                           (3*9*10)
		

Crossrefs

Positions of 1's are 1 and A000040.
Not requiring separability gives A010052 for n > 1.
Positions of 2's are A323644.
Partitions of this type are counted by A325534(n) + A000035(n + 1).
Partitions of this type are ranked by A335433 \/ A001248.
Partitions not of this type are counted by A325535(n) - A000035(n + 1).
Partitions not of this type are ranked by A345193 = A335448 \ A001248.
Not allowing twins gives A335434, complement A333487,
The case with an alternating permutation is A347050, no twins A348379.
The case without an alternating permutation is A347706, no twins A348380.
The complement is counted by A348381.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A003242 counts anti-run compositions, ranked by A333489.
A025047 counts alternating or wiggly compositions.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
    Table[Length[Select[facs[n],MatchQ[#,{x_,x_}]||sepQ[#]&]],{n,100}]

Formula

a(n > 1) = A335434(n) + A010052(n), where A010052(n) = 1 if n is a perfect square, otherwise 0.

A347048 Number of even-length ordered factorizations of n with integer alternating product.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 4, 0, 0, 0, 7, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 6, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 11, 0, 0, 0, 1, 0, 0, 0, 11, 0, 0, 1, 1, 0, 0, 0, 6, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 8, 0, 1, 1, 7, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2021

Keywords

Comments

An ordered factorization of n is a sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(n) ordered factorizations for n = 16, 32, 36, 48, 64, 96:
  4*4       8*4       6*6       12*4      8*8           24*4
  8*2       16*2      12*3      24*2      16*4          48*2
  2*2*2*2   2*2*4*2   18*2      2*2*6*2   32*2          3*2*8*2
            4*2*2*2   2*2*3*3   3*2*4*2   2*2*4*4       4*2*6*2
                      2*3*3*2   4*2*3*2   2*2*8*2       6*2*4*2
                      3*2*2*3   6*2*2*2   2*4*4*2       8*2*3*2
                      3*3*2*2             4*2*2*4       12*2*2*2
                                          4*2*4*2       2*2*12*2
                                          4*4*2*2
                                          8*2*2*2
                                          2*2*2*2*2*2
		

Crossrefs

Positions of 0's are A005117 \ {2}.
The restriction to powers of 2 is A027306.
Heinz numbers of partitions of this type are A028260 /\ A347457.
Positions of 3's appear to be A030514.
Positions of 1's are 1 and A082293.
Allowing non-integer alternating product gives A174725, unordered A339846.
The odd-length version is A347049.
The unordered version is A347438, reverse A347439.
Allowing any length gives A347463.
Partitions of this type are counted by A347704, reverse A035363.
A001055 counts factorizations (strict A045778, ordered A074206).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A339890 counts odd-length factorizations, ordered A174726.
A347050 = factorizations with alternating permutation, complement A347706.
A347437 = factorizations with integer alternating product, reverse A347442.
A347446 = partitions with integer alternating product, reverse A347445.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[ordfacs[n],EvenQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
  • PARI
    A347048(n, m=n, ap=1, e=0) = if(1==n,!(e%2) && 1==numerator(ap), sumdiv(n, d, if(d>1, A347048(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024

Formula

a(n) = A347463(n) - A347049(n).

Extensions

Data section extended up to a(105) by Antti Karttunen, Jul 28 2024
Showing 1-10 of 11 results. Next