cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A348615 Number of non-alternating permutations of {1...n}.

Original entry on oeis.org

0, 0, 0, 2, 14, 88, 598, 4496, 37550, 347008, 3527758, 39209216, 473596070, 6182284288, 86779569238, 1303866853376, 20884006863710, 355267697410048, 6397563946377118, 121586922638606336, 2432161265800164950, 51081039175603191808, 1123862030028821404198
Offset: 0

Views

Author

Gus Wiseman, Nov 03 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.
Also permutations of {1...n} matching the consecutive patterns (1,2,3) or (3,2,1). Matching only one of these gives A065429.

Examples

			The a(4) = 14 permutations:
  (1,2,3,4)  (3,1,2,4)
  (1,2,4,3)  (3,2,1,4)
  (1,3,4,2)  (3,4,2,1)
  (1,4,3,2)  (4,1,2,3)
  (2,1,3,4)  (4,2,1,3)
  (2,3,4,1)  (4,3,1,2)
  (2,4,3,1)  (4,3,2,1)
		

Crossrefs

The complement is counted by A001250, ranked by A333218.
The complementary version for compositions is A025047, ranked by A345167.
A directed version is A065429, complement A049774.
The version for compositions is A345192, ranked by A345168.
The version for ordered factorizations is A348613, complement A348610.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A348379 counts factorizations with an alternating permutation.
A348380 counts factorizations without an alternating permutation.

Programs

  • Maple
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> n!-`if`(n<2, 1, 2)*b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 04 2021
  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] ==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Permutations[Range[n]],!wigQ[#]&]],{n,0,6}]
  • Python
    from itertools import accumulate, count, islice
    def A348615_gen(): # generator of terms
        yield from (0,0)
        blist, f = (0,2), 1
        for n in count(2):
            f *= n
            yield f - (blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
    A348615_list = list(islice(A348615_gen(),40)) # Chai Wah Wu, Jun 09-11 2022

Formula

a(n) = n! - A001250(n).

A348379 Number of factorizations of n with an alternating permutation.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 1, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 3, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

First differs from A335434 at a(216) = 27, A335434(216) = 28. Also differs from A335434 at a(270) = 19, A335434(270) = 20.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
All of the counted factorizations are separable (A335434).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(270) = 19 factorizations:
  (2*3*3*15)  (2*3*45)  (2*135)  (270)
  (2*3*5*9)   (2*5*27)  (3*90)
  (3*3*5*6)   (2*9*15)  (5*54)
              (3*3*30)  (6*45)
              (3*5*18)  (9*30)
              (3*6*15)  (10*27)
              (3*9*10)  (15*18)
              (5*6*9)
		

Crossrefs

Partitions not of this type are counted by A345165, ranked by A345171.
Partitions of this type are counted by A345170, ranked by A345172.
Twins and partitions of this type are counted by A344740, ranked by A344742.
The case with twins is A347050.
The complement is counted by A348380, without twins A347706.
The ordered version is A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[facs[n],Select[Permutations[#],wigQ]!={}&]],{n,100}]

Formula

a(2^n) = A345170(n).

A348610 Number of alternating ordered factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 12, 1, 3, 3, 6, 1, 11, 1, 7, 3, 3, 3, 15, 1, 3, 3, 12, 1, 11, 1, 6, 6, 3, 1, 23, 1, 6, 3, 6, 1, 12, 3, 12, 3, 3, 1, 28, 1, 3, 6, 12, 3, 11, 1, 6, 3, 11, 1, 33, 1, 3, 6, 6, 3, 11, 1, 23, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 05 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The alternating ordered factorizations of n = 1, 6, 12, 16, 24, 30, 32, 36:
  ()   6     12      16      24      30      32      36
       2*3   2*6     2*8     3*8     5*6     4*8     4*9
       3*2   3*4     8*2     4*6     6*5     8*4     9*4
             4*3     2*4*2   6*4     10*3    16*2    12*3
             6*2             8*3     15*2    2*16    18*2
             2*3*2           12*2    2*15    2*8*2   2*18
                             2*12    3*10    4*2*4   3*12
                             2*4*3   2*5*3           2*6*3
                             2*6*2   3*2*5           2*9*2
                             3*2*4   3*5*2           3*2*6
                             3*4*2   5*2*3           3*4*3
                             4*2*3                   3*6*2
                                                     6*2*3
                                                     2*3*2*3
                                                     3*2*3*2
		

Crossrefs

The additive version (compositions) is A025047 ranked by A345167.
The complementary additive version is A345192, ranked by A345168.
Dominated by A348611 (the anti-run version) at positions A122181.
The complement is counted by A348613.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A347463 counts ordered factorizations with integer alternating product.
A348379 counts factorizations w/ an alternating permutation.
A348380 counts factorizations w/o an alternating permutation.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] == Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[ordfacs[n],wigQ]],{n,100}]

A347706 Number of factorizations of n that are not a twin (x*x) nor have an alternating permutation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

First differs from A348381 at a(216) = 4, A348381(216) = 3.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of sets.

Examples

			The a(n) factorizations for n = 96, 192, 2160, 576:
  2*2*2*12      3*4*4*4         3*3*3*80       4*4*4*9
  2*2*2*2*6     2*2*2*24        6*6*6*10       2*2*2*72
  2*2*2*2*2*3   2*2*2*2*12      2*2*2*270      2*2*2*2*36
                2*2*2*2*2*6     2*3*3*3*40     2*2*2*2*4*9
                2*2*2*2*3*4     2*2*2*2*135    2*2*2*2*6*6
                2*2*2*2*2*2*3   2*2*2*2*3*45   2*2*2*2*2*18
                                2*2*2*2*5*27   2*2*2*2*3*12
                                2*2*2*2*9*15   2*2*2*2*2*2*9
                                               2*2*2*2*2*3*6
                                               2*2*2*2*2*2*3*3
		

Crossrefs

Positions of nonzero terms are A046099.
Partitions of this type are counted by A344654, ranked by A344653.
Partitions not of this type are counted by A344740, ranked by A344742.
The complement is counted by A347050, without twins A348379.
The version for compositions is A348377.
The version allowing twins is A348380.
The inseparable case is A348381.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations of sets.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347438 counts factorizations with alternating product 1, additive A119620.
A348610 counts alternating ordered factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Function[f,Select[Permutations[f],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]=={}]]],{n,100}]

Formula

a(2^n) = A344654(n).

A348613 Number of non-alternating ordered factorizations of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 8, 1, 0, 1, 2, 0, 2, 0, 9, 0, 0, 0, 11, 0, 0, 0, 8, 0, 2, 0, 2, 2, 0, 0, 25, 1, 2, 0, 2, 0, 8, 0, 8, 0, 0, 0, 16, 0, 0, 2, 20, 0, 2, 0, 2, 0, 2, 0, 43, 0, 0, 2, 2, 0, 2, 0, 25, 4, 0, 0, 16, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.

Examples

			The a(n) ordered factorizations for n = 4, 12, 16, 24, 32, 36:
  2*2   2*2*3   4*4       2*2*6     2*2*8       6*6
        3*2*2   2*2*4     2*3*4     2*4*4       2*2*9
                4*2*2     4*3*2     4*4*2       2*3*6
                2*2*2*2   6*2*2     8*2*2       3*3*4
                          2*2*2*3   2*2*2*4     4*3*3
                          2*2*3*2   2*2*4*2     6*3*2
                          2*3*2*2   2*4*2*2     9*2*2
                          3*2*2*2   4*2*2*2     2*2*3*3
                                    2*2*2*2*2   2*3*3*2
                                                3*2*2*3
                                                3*3*2*2
		

Crossrefs

The complementary additive version is A025047, ranked by A345167.
The additive version is A345192, ranked by A345168, without twins A348377.
The complement is counted by A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions without an alternating permutation, ranked by A345171.
A345170 counts partitions with an alternating permutation, ranked by A345172.
A348379 counts factorizations w/ an alternating permutation, with twins A347050.
A348380 counts factorizations w/o an alternating permutation, w/o twins A347706.
A348611 counts anti-run ordered factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[ordfacs[n],!wigQ[#]&]],{n,100}]

A348380 Number of factorizations of n without an alternating permutation. Includes all twins (x*x).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

First differs from A333487 at a(216) = 4, A333487(216) = 3.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(n) factorizations for n = 96, 144, 192, 384:
  (2*2*2*12)     (12*12)        (3*4*4*4)        (4*4*4*6)
  (2*2*2*2*6)    (2*2*2*18)     (2*2*2*24)       (2*2*2*48)
  (2*2*2*2*2*3)  (2*2*2*2*9)    (2*2*2*2*12)     (2*2*2*2*24)
                 (2*2*2*2*3*3)  (2*2*2*2*2*6)    (2*2*2*2*3*8)
                                (2*2*2*2*3*4)    (2*2*2*2*4*6)
                                (2*2*2*2*2*2*3)  (2*2*2*2*2*12)
                                                 (2*2*2*2*2*2*6)
                                                 (2*2*2*2*2*3*4)
                                                 (2*2*2*2*2*2*2*3)
		

Crossrefs

The inseparable case is A333487, complement A335434, without twins A348381.
Non-twin partitions of this type are counted by A344654, ranked by A344653.
Twins and partitions not of this type are counted by A344740, ranked by A344742.
Partitions of this type are counted by A345165, ranked by A345171.
Partitions not of this type are counted by A345170, ranked by A345172.
The case without twins is A347706.
The complement is counted by A348379, with twins A347050.
Numbers with a factorization of this type are A348609.
An ordered version is A348613, complement A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A325535 counts inseparable partitions, ranked by A335448.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[facs[n],Select[Permutations[#],wigQ]=={}&]],{n,100}]

Formula

a(2^n) = A345165(n).

A349050 Number of multisets of size n that have no alternating permutations and cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 8, 12, 20, 32, 48, 80, 112, 192, 256, 448, 576, 1024, 1280, 2304, 2816, 5120, 6144, 11264, 13312, 24576, 28672, 53248, 61440, 114688, 131072, 245760, 278528, 524288, 589824, 1114112, 1245184, 2359296, 2621440, 4980736, 5505024
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The multiset {1,2,2,2,2,3,3} has no alternating permutations, even though it does have the three anti-run permutations (2,1,2,3,2,3,2), (2,3,2,1,2,3,2), (2,3,2,3,2,1,2), so is counted under a(7).
The a(2) = 1 through a(7) = 12 multisets:
  {11}  {111}  {1111}  {11111}  {111111}  {1111111}
               {1112}  {11112}  {111112}  {1111112}
               {1222}  {12222}  {111122}  {1111122}
                       {12223}  {111123}  {1111123}
                                {112222}  {1122222}
                                {122222}  {1122223}
                                {122223}  {1222222}
                                {123333}  {1222223}
                                          {1222233}
                                          {1222234}
                                          {1233333}
                                          {1233334}
As compositions:
  (2)  (3)  (4)    (5)      (6)      (7)
            (1,3)  (1,4)    (1,5)    (1,6)
            (3,1)  (4,1)    (2,4)    (2,5)
                   (1,3,1)  (4,2)    (5,2)
                            (5,1)    (6,1)
                            (1,1,4)  (1,1,5)
                            (1,4,1)  (1,4,2)
                            (4,1,1)  (1,5,1)
                                     (2,4,1)
                                     (5,1,1)
                                     (1,1,4,1)
                                     (1,4,1,1)
		

Crossrefs

The case of weakly decreasing multiplicities is A025065.
The inseparable case is A336102.
A separable instead of alternating version is A336103.
The version for partitions is A345165.
The version for factorizations is A348380, complement A348379.
The complement (still covering an initial interval) is counted by A349055.
A000670 counts sequences covering an initial interval, anti-run A005649.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, ranked by A333489.
A025047 = alternating compositions, ranked by A345167, also A025048/A025049.
A049774 counts permutations avoiding the consecutive pattern (1,2,3).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A344654 counts partitions w/o an alternating permutation, ranked by A344653.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[allnorm[n],Select[Permutations[#],wigQ]=={}&]],{n,0,7}]
  • PARI
    a(n) = if(n==0, 0, if(n%2==0, (n+2)*2^(n/2-3), (n-1)*2^((n-1)/2-2))) \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A011782(n) - A349055(n).
a(n) = (n+2)*2^(n/2-3) for even n > 0; a(n) = (n-1)*2^((n-5)/2) for odd n. - Andrew Howroyd, Jan 13 2024

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 13 2024

A349055 Number of multisets of size n that have an alternating permutation and cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 24, 52, 108, 224, 464, 944, 1936, 3904, 7936, 15936, 32192, 64512, 129792, 259840, 521472, 1043456, 2091008, 4183040, 8375296, 16752640, 33525760, 67055616, 134156288, 268320768, 536739840, 1073496064, 2147205120, 4294443008, 8589344768
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.
The multisets that have an alternating permutation are those which have no part with multiplicity greater than floor(n/2) except for odd n when either the smallest or largest part can have multiplicity ceiling(n/2). - Andrew Howroyd, Jan 13 2024

Examples

			The multiset {1,2,2,3} has alternating permutations (2,1,3,2), (2,3,1,2), so is counted under a(4).
The a(1) = 1 through a(5) = 12 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,2}
              {1,2,2}  {1,1,2,3}  {1,1,1,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,2,2}
                       {1,2,3,3}  {1,1,2,2,3}
                       {1,2,3,4}  {1,1,2,3,3}
                                  {1,1,2,3,4}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
As compositions:
  (1)  (1,1)  (1,2)    (2,2)      (2,3)
              (2,1)    (1,1,2)    (3,2)
              (1,1,1)  (1,2,1)    (1,1,3)
                       (2,1,1)    (1,2,2)
                       (1,1,1,1)  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,1,2)
                                  (1,1,2,1)
                                  (1,2,1,1)
                                  (2,1,1,1)
                                  (1,1,1,1,1)
		

Crossrefs

The strong inseparable case is A025065.
A separable instead of alternating version is A336103, complement A336102.
The case of weakly decreasing multiplicities is A336106.
The version for non-twin partitions is A344654, ranked by A344653.
The complement for non-twin partitions is A344740, ranked by A344742.
The complement for partitions is A345165, ranked by A345171.
The version for partitions is A345170, ranked by A345172.
The version for factorizations is A348379, complement A348380.
The complement (still covering an initial interval) is counted by A349050.
A000670 counts sequences covering an initial interval, anti-run A005649.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, ranked by A333489.
A025047 = alternating compositions, ranked by A345167, also A025048/A025049.
A049774 counts permutations avoiding the consecutive pattern (1,2,3).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[allnorm[n], Select[Permutations[#],wigQ]!={}&]],{n,0,7}]
  • PARI
    a(n) = if(n==0, 1, 2^(n-1) - if(n%2==0, (n+2)*2^(n/2-3), (n-1)*2^((n-5)/2))) \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A011782(n) - A349050(n).
a(n) = 2^(n-1) - (n+2)*2^(n/2-3) for even n > 0; a(n) = 2^(n-1) - (n-1)*2^((n-5)/2) for odd n. - Andrew Howroyd, Jan 13 2024

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 13 2024

A349059 Number of weakly alternating ordered factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 18, 2, 3, 4, 8, 1, 11, 1, 16, 3, 3, 3, 22, 1, 3, 3, 18, 1, 11, 1, 8, 8, 3, 1, 38, 2, 8, 3, 8, 1, 18, 3, 18, 3, 3, 1, 32, 1, 3, 8, 28, 3, 11, 1, 8, 3, 11, 1, 56, 1, 3, 8, 8, 3, 11, 1, 38, 8, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The ordered factorizations for n = 2, 4, 6, 8, 12, 24, 30:
  (2)  (4)    (6)    (8)      (12)     (24)       (30)
       (2*2)  (2*3)  (2*4)    (2*6)    (3*8)      (5*6)
              (3*2)  (4*2)    (3*4)    (4*6)      (6*5)
                     (2*2*2)  (4*3)    (6*4)      (10*3)
                              (6*2)    (8*3)      (15*2)
                              (2*2*3)  (12*2)     (2*15)
                              (2*3*2)  (2*12)     (3*10)
                              (3*2*2)  (2*2*6)    (2*5*3)
                                       (2*4*3)    (3*2*5)
                                       (2*6*2)    (3*5*2)
                                       (3*2*4)    (5*2*3)
                                       (3*4*2)
                                       (4*2*3)
                                       (6*2*2)
                                       (2*2*2*3)
                                       (2*2*3*2)
                                       (2*3*2*2)
                                       (3*2*2*2)
		

Crossrefs

The strong version for compositions is A025047, also A025048, A025049.
The strong case is A348610, complement A348613.
The version for compositions is A349052, complement A349053.
As compositions these are ranked by the complement of A349057.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A335434 counts separable factorizations, complement A333487.
A345164 counts alternating permutations of prime factors, w/ twins A344606.
A345170 counts partitions with an alternating permutation.
A348379 = factorizations w/ alternating permutation, complement A348380.
A348611 counts anti-run ordered factorizations, complement A348616.
A349060 counts weakly alternating partitions, complement A349061.
A349800 = weakly but not strongly alternating compositions, ranked A349799.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]], {m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@facs[n], whkQ[#]||whkQ[-#]&]],{n,100}]

Formula

a(2^n) = A349052(n).

A348609 Numbers with a separable factorization without an alternating permutation.

Original entry on oeis.org

216, 270, 324, 378, 432, 486, 540, 594, 640, 648, 702, 756, 768, 810, 864, 896, 918, 960, 972, 1024, 1026, 1080, 1134, 1152, 1188, 1242, 1280, 1296, 1344, 1350, 1404, 1408, 1458, 1500, 1512, 1536, 1566, 1620, 1664, 1674, 1728, 1750, 1782, 1792, 1836, 1890
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of the remaining multiplicities plus one.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of sets.
Note that 216 has separable prime factorization (2*2*2*3*3*3) with an alternating permutation, but the separable factorization (2*3*3*3*4) is has no alternating permutation. See also A345173.

Examples

			The terms and their prime factorizations begin:
  216 = 2*2*2*3*3*3
  270 = 2*3*3*3*5
  324 = 2*2*3*3*3*3
  378 = 2*3*3*3*7
  432 = 2*2*2*2*3*3*3
  486 = 2*3*3*3*3*3
  540 = 2*2*3*3*3*5
  594 = 2*3*3*3*11
  640 = 2*2*2*2*2*2*2*5
  648 = 2*2*2*3*3*3*3
  702 = 2*3*3*3*13
  756 = 2*2*3*3*3*7
  768 = 2*2*2*2*2*2*2*2*3
  810 = 2*3*3*3*3*5
  864 = 2*2*2*2*2*3*3*3
		

Crossrefs

Partitions of this type are counted by A345166, ranked by A345173 (a superset).
Compositions of this type are counted by A345195, ranked by A345169.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A025047 counts alternating compositions, complement A345192, ranked by A345167.
A335434 counts separable factorizations, with twins A348383, complement A333487.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions w/o an alternating permutation, complement A345170.
A347438 counts factorizations with alternating product 1, additive A119620.
A348379 counts factorizations w/ an alternating permutation, complement A348380.
A348610 counts alternating ordered factorizations, complement A348613.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[1000],Function[n,Select[facs[n],sepQ[#]&&Select[Permutations[#],wigQ]=={}&]!={}]]
Showing 1-10 of 19 results. Next