A345165 Number of integer partitions of n without an alternating permutation.
0, 0, 1, 1, 2, 2, 5, 5, 8, 11, 17, 20, 29, 37, 51, 65, 85, 106, 141, 175, 223, 277, 351, 432, 540, 663, 820, 999, 1226, 1489, 1817, 2192, 2654, 3191, 3847, 4603, 5517, 6578, 7853, 9327, 11084, 13120, 15533, 18328, 21621, 25430, 29905, 35071, 41111, 48080, 56206, 65554, 76420, 88918
Offset: 0
Keywords
Examples
The a(2) = 1 through a(9) = 11 partitions: (11) (111) (22) (2111) (33) (2221) (44) (333) (1111) (11111) (222) (4111) (2222) (3222) (3111) (31111) (5111) (6111) (21111) (211111) (41111) (22221) (111111) (1111111) (221111) (51111) (311111) (321111) (2111111) (411111) (11111111) (2211111) (3111111) (21111111) (111111111)
Links
- Joseph Likar, Table of n, a(n) for n = 0..1000
- Joseph Likar, Java Implementation using QBinomials
Crossrefs
Programs
-
Mathematica
wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],wigQ]=={}&]],{n,0,15}]
Extensions
a(26) onwards by Joseph Likar, Aug 21 2023
Comments