A096441 Number of palindromic and unimodal compositions of n. Equivalently, the number of orbits under conjugation of even nilpotent n X n matrices.
1, 2, 2, 4, 3, 7, 5, 11, 8, 17, 12, 26, 18, 37, 27, 54, 38, 76, 54, 106, 76, 145, 104, 199, 142, 266, 192, 357, 256, 472, 340, 621, 448, 809, 585, 1053, 760, 1354, 982, 1740, 1260, 2218, 1610, 2818, 2048, 3559, 2590, 4485, 3264, 5616, 4097, 7018, 5120, 8728, 6378
Offset: 1
Keywords
Examples
From _Joerg Arndt_, Dec 27 2012: (Start) There are a(10)=17 partitions of 10 where all differences between successive parts are even: [ 1] [ 1 1 1 1 1 1 1 1 1 1 ] [ 2] [ 2 2 2 2 2 ] [ 3] [ 3 1 1 1 1 1 1 1 ] [ 4] [ 3 3 1 1 1 1 ] [ 5] [ 3 3 3 1 ] [ 6] [ 4 2 2 2 ] [ 7] [ 4 4 2 ] [ 8] [ 5 1 1 1 1 1 ] [ 9] [ 5 3 1 1 ] [10] [ 5 5 ] [11] [ 6 2 2 ] [12] [ 6 4 ] [13] [ 7 1 1 1 ] [14] [ 7 3 ] [15] [ 8 2 ] [16] [ 9 1 ] [17] [ 10 ] (End)
References
- A. G. Elashvili and V. G. Kac, Classification of good gradings of simple Lie algebras. Lie groups and invariant theory, 85-104, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Karin Baur and Nolan Wallach, Nice parabolic subalgebras of reductive Lie algebras, Represent. Theory 9 (2005), 1-29.
- A. G. Elashvili and V. G. Kac, Classification of good gradings of simple Lie algebras, arXiv:math-ph/0312030, 2002-2004.
- Sergi Elizalde and Emeric Deutsch, The degree of asymmetry of a sequence, Enum. Combinat. Applic. 2 (2022) no 1 #S2R7, U(0,z).
Crossrefs
The complement in partitions is counted by A006477
A version for compositions is A016116.
A000041 counts integer partitions.
A025065 counts palindromic partitions.
A027187 counts partitions with even length/maximum.
A035377 counts partitions using multiples of 3.
A340785 counts factorizations into even factors.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i>n, 0, `if`(irem(n, i)=0, 1, 0) +add(`if`(irem(j, 2)=0, b(n-i*j, i+1), 0), j=0..n/i)) end: a:= n-> b(n, 1): seq(a(n), n=1..60); # Alois P. Heinz, Mar 26 2014
-
Mathematica
(* The following Mathematica program first generates all of the palindromic, unimodal compositions of n and then counts them. *) Pal[n_] := Block[{i, j, k, m, Q, L}, If[n == 1, Return[{{1}}]]; If[n == 2, Return[{{1, 1}, {2}}]]; L = {{n}}; If[Mod[n, 2] == 0, L = Append[L, {n/2, n/2}]]; For[i = 1, i < n, i++, Q = Pal[n - 2i]; m = Length[Q]; For[j = 1, j <= m, j++, If[i <= Q[[j, 1]], L = Append[L, Append[Prepend[Q[[j]], i], i]]]]]; L] NoPal[n_] := Length[Pal[n]] a[n_] := PartitionsQ[n] + If[EvenQ[n], PartitionsP[n/2], 0]; Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Mar 17 2014, after Vladeta Jovovic *) Table[Length[Select[IntegerPartitions[n],And@@EvenQ/@Rest[Length/@Split[#]]&]],{n,1,30}] (* Gus Wiseman, Jan 13 2022 *)
-
PARI
my(x='x+O('x^66)); Vec(eta(x^2)/eta(x)+1/eta(x^2)-2) \\ Joerg Arndt, Jan 17 2016
Formula
G.f.: sum(j>=1, q^j * (1-q^j)/prod(i=1..j, 1-q^(2*i) ) ).
G.f.: F + G - 2, where F = Product_{j>=1} 1/(1-q^(2*j)), G = Product_{j>=0} 1/(1-q^(2*j+1)).
Comments