A025047
Number of alternating compositions, i.e., compositions with alternating increases and decreases, starting with either an increase or a decrease.
Original entry on oeis.org
1, 1, 1, 3, 4, 7, 12, 19, 29, 48, 75, 118, 186, 293, 460, 725, 1139, 1789, 2814, 4422, 6949, 10924, 17168, 26979, 42404, 66644, 104737, 164610, 258707, 406588, 639009, 1004287, 1578363, 2480606, 3898599, 6127152, 9629623, 15134213, 23785388, 37381849, 58750468
Offset: 0
From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(7)=19 such compositions of 7:
[ 1] + [ 1 2 1 2 1 ]
[ 2] + [ 1 2 1 3 ]
[ 3] + [ 1 3 1 2 ]
[ 4] + [ 1 4 2 ]
[ 5] + [ 1 5 1 ]
[ 6] + [ 1 6 ]
[ 7] - [ 2 1 3 1 ]
[ 8] - [ 2 1 4 ]
[ 9] + [ 2 3 2 ]
[10] + [ 2 4 1 ]
[11] + [ 2 5 ]
[12] - [ 3 1 2 1 ]
[13] - [ 3 1 3 ]
[14] + [ 3 4 ]
[15] - [ 4 1 2 ]
[16] - [ 4 3 ]
[17] - [ 5 2 ]
[18] - [ 6 1 ]
[19] 0 [ 7 ]
For A025048(7)-1=10 of these the first two parts are increasing (marked by '+'),
and for A025049(7)-1=8 the first two parts are decreasing (marked by '-').
The composition into one part is counted by both A025048 and A025049.
(End)
The version allowing pairs (x,x) is
A344604.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A274174 counts compositions with equal parts contiguous.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions w/o alternating permutation, ranked by
A345171.
A345170 counts partitions w/ alternating permutation, ranked by
A345172.
Cf.
A000070,
A008965,
A238279,
A333755,
A344606,
A344614,
A344653,
A344740,
A345163,
A345166,
A345169.
-
b:= proc(n, l, t) option remember; `if`(n=0, 1, add(
b(n-j, j, 1-t), j=`if`(t=1, 1..min(l-1, n), l+1..n)))
end:
a:= n-> 1+add(add(b(n-j, j, i), i=0..1), j=1..n-1):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 31 2024
-
wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],wigQ]],{n,0,15}] (* Gus Wiseman, Jun 17 2021 *)
-
D(n,f)={my(M=matrix(n,n,j,k,k>=j), s=M[,n]); for(b=1, n, f=!f; M=matrix(n,n,j,k,if(k1, M[j-k,k-1]), M[j-k,n]-M[j-k,k] ))); for(k=2, n, M[,k]+=M[,k-1]); s+=M[,n]); s~}
seq(n) = concat([1], D(n,0) + D(n,1) - vector(n,j,1)) \\ Andrew Howroyd, Jan 31 2024
A001250
Number of alternating permutations of order n.
Original entry on oeis.org
1, 1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042, 707584, 5405530, 44736512, 398721962, 3807514624, 38783024290, 419730685952, 4809759350882, 58177770225664, 740742376475050, 9902996106248192, 138697748786275802, 2030847773013704704, 31029068327114173810
Offset: 0
1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 32*x^5 + 122*x^6 + 544*x^7 + 2770*x^8 + ...
From _Gus Wiseman_, Jun 21 2021: (Start)
The a(0) = 1 through a(4) = 10 permutations:
() (1) (1,2) (1,3,2) (1,3,2,4)
(2,1) (2,1,3) (1,4,2,3)
(2,3,1) (2,1,4,3)
(3,1,2) (2,3,1,4)
(2,4,1,3)
(3,1,4,2)
(3,2,4,1)
(3,4,1,2)
(4,1,3,2)
(4,2,3,1)
(End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..500 (terms n=1..100 from Max Alekseyev)
- Max A. Alekseyev, On the number of permutations with bounded run lengths, arXiv:1205.4581 [math.CO], 2012-2013.
- Désiré André, Sur les permutations alternées, J. Math. Pur. Appl., 7 (1881), 167-184.
- Désiré André, Étude sur les maxima, minima et séquences des permutations, Ann. Sci. Ecole Norm. Sup., 3, no. 1 (1884), 121-135.
- Désiré André, Mémoire sur les permutations quasi-alternées, Journal de mathématiques pures et appliquées 5e série, tome 1 (1895), 315-350.
- Désiré André, Mémoire sur les séquences des permutations circulaires, Bulletin de la S. M. F., tome 23 (1895), pp. 122-184.
- Stefano Barbero, Umberto Cerruti, and Nadir Murru, Some combinatorial properties of the Hurwitz series ring arXiv:1710.05665 [math.NT], 2017.
- D. Berry, J. Broom, D. Dixon, and A. Flaherty, Umbral Calculus and the Boustrophedon Transform, 2013.
- C. K. Cook, M. R. Bacon, and R. A. Hillman, Higher-order Boustrophedon transforms for certain well-known sequences, Fib. Q., 55(3) (2017), 201-208.
- C. Davis, Problem 4755, Amer. Math. Monthly, 64 (1957) 596; solution by W. J. Blundon, 65 (1958), 533-534.
- Chandler Davis, Problem 4755: A Permutation Problem, Amer. Math. Monthly, 64 (1957) 596; solution by W. J. Blundon, 65 (1958), 533-534. [Denoted by P_n in solution.] [Annotated scanned copy]
- S. Kitaev, Multi-avoidance of generalized patterns, Discrete Math., 260 (2003), 89-100. (See p. 100.)
- S. T. Thompson, Problem E754: Skew Ordered Sequences, Amer. Math. Monthly, 54 (1947), 416-417. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Alternating Permutation
The version for permutations of prime indices is
A345164.
The version for patterns is
A345194.
A049774 counts permutations avoiding adjacent (1,2,3).
A344614 counts compositions avoiding adjacent (1,2,3) and (3,2,1).
A344615 counts compositions avoiding the weak adjacent pattern (1,2,3).
A344654 counts partitions without a wiggly permutation, ranked by
A344653.
A345170 counts partitions with a wiggly permutation, ranked by
A345172.
Cf.
A000041,
A003242,
A032020,
A056986,
A261962,
A325534,
A325535,
A335452,
A344652,
A344740,
A345165.
-
a001250 n = if n == 1 then 1 else 2 * a000111 n
-- Reinhard Zumkeller, Sep 17 2014
-
# With Eulerian polynomials:
A := (n, x) -> `if`(n<2, 1/2/(1+I)^(1-n), add(add((-1)^j*binomial(n+1, j)*(m+1-j)^n, j=0..m)*x^m, m=0..n-1)):
A001250 := n -> 2*(I-1)^(1-n)*exp(I*(n-1)*Pi/2)*A(n,I);
seq(A001250(i), i=0..22); # Peter Luschny, May 27 2012
# second Maple program:
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
a:= n-> `if`(n<2, 1, 2)*b(n, 0):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 29 2015
-
a[n_] := 4*Abs[PolyLog[-n, I]]; a[0] = a[1] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 09 2016, after M. F. Hasler *)
Table[Length[Select[Permutations[Range[n]],And@@(!(OrderedQ[#]||OrderedQ[Reverse[#]])&/@Partition[#,3,1])&]],{n,8}] (* Gus Wiseman, Jun 21 2021 *)
a[0]:=1; a[1]:=1; a[n_]:=a[n]=1/(n (n-1)) Sum[a[n-1-k] a[k] k, {k,1, n-1}]; Join[{a[0], a[1]}, Map[2 #! a[#]&, Range[2,24]]] (* Oliver Seipel, May 27 2024 *)
-
{a(n) = local(v=[1], t); if( n<0, 0, for( k=2, n+3, t=0; v = vector( k, i, if( i>1, t += v[k+1 - i]))); v[3])} /* Michael Somos, Feb 03 2004 */
-
{a(n) = if( n<0, 0, n! * polcoeff( (tan(x + x * O(x^n)) + 1 / cos(x + x * O(x^n)))^2, n))} /* Michael Somos, Feb 05 2011 */
-
A001250(n)=sum(m=0,n\2,my(k);(-1)^m*sum(j=0,k=n+1-2*m,binomial(k,j)*(-1)^j*(k-2*j)^(n+1))/k>>k)*2-(n==1) \\ M. F. Hasler, May 19 2012
-
A001250(n)=4*abs(polylog(-n,I))-(n==1) \\ M. F. Hasler, May 20 2012
-
my(x='x+O('x^66), egf=1+2*(tan(x)+1/cos(x))-2-x); Vec(serlaplace(egf)) /* Joerg Arndt, May 28 2012 */
-
from itertools import accumulate, islice
def A001250_gen(): # generator of terms
yield from (1,1)
blist = (0,2)
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
A001250_list = list(islice(A001250_gen(),40)) # Chai Wah Wu, Jun 09-11 2022
-
from sympy import bernoulli, euler
def A001250(n): return 1 if n<2 else abs(((1<Chai Wah Wu, Nov 13 2024
-
# Algorithm of L. Seidel (1877)
def A001250_list(n) :
R = [1]; A = {-1:0, 0:2}; k = 0; e = 1
for i in (0..n) :
Am = 0; A[k + e] = 0; e = -e
for j in (0..i) : Am += A[k]; A[k] = Am; k += e
if i > 1 : R.append(A[-i//2] if i%2 == 0 else A[i//2])
return R
A001250_list(22) # Peter Luschny, Mar 31 2012
A345167
Numbers k such that the k-th composition in standard order is alternating.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 20, 22, 24, 25, 32, 33, 34, 38, 40, 41, 44, 45, 48, 49, 50, 54, 64, 65, 66, 68, 70, 72, 76, 77, 80, 81, 82, 88, 89, 96, 97, 98, 102, 108, 109, 128, 129, 130, 132, 134, 140, 141, 144, 145, 148, 152, 153, 160, 161, 162
Offset: 1
The terms together with their binary indices begin:
1: (1) 25: (1,3,1) 66: (5,2)
2: (2) 32: (6) 68: (4,3)
4: (3) 33: (5,1) 70: (4,1,2)
5: (2,1) 34: (4,2) 72: (3,4)
6: (1,2) 38: (3,1,2) 76: (3,1,3)
8: (4) 40: (2,4) 77: (3,1,2,1)
9: (3,1) 41: (2,3,1) 80: (2,5)
12: (1,3) 44: (2,1,3) 81: (2,4,1)
13: (1,2,1) 45: (2,1,2,1) 82: (2,3,2)
16: (5) 48: (1,5) 88: (2,1,4)
17: (4,1) 49: (1,4,1) 89: (2,1,3,1)
18: (3,2) 50: (1,3,2) 96: (1,6)
20: (2,3) 54: (1,2,1,2) 97: (1,5,1)
22: (2,1,2) 64: (7) 98: (1,4,2)
24: (1,4) 65: (6,1) 102: (1,3,1,2)
Partitions with a permutation of this type:
A345170, complement
A345165.
Factorizations with a permutation of this type:
A348379.
A003242 counts anti-run compositions.
A345164 counts alternating permutations of prime indices.
Statistics of standard compositions:
- Number of maximal anti-runs is
A333381.
- Number of distinct parts is
A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are
A114994.
- Weakly increasing compositions (multisets) are
A225620.
- Non-alternating anti-runs are
A345169.
Cf.
A025048,
A025049,
A059893,
A106356,
A238279,
A335448,
A344604,
A344615,
A344653,
A344742,
A345163,
A348377.
-
stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] ==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Select[Range[0,100],wigQ@*stc]
A345192
Number of non-alternating compositions of n.
Original entry on oeis.org
0, 0, 1, 1, 4, 9, 20, 45, 99, 208, 437, 906, 1862, 3803, 7732, 15659, 31629, 63747, 128258, 257722, 517339, 1037652, 2079984, 4167325, 8346204, 16710572, 33449695, 66944254, 133959021, 268028868, 536231903, 1072737537, 2145905285, 4292486690, 8586035993, 17173742032, 34350108745, 68704342523, 137415168084
Offset: 0
The a(2) = 1 through a(6) = 20 compositions:
(11) (111) (22) (113) (33)
(112) (122) (114)
(211) (221) (123)
(1111) (311) (222)
(1112) (321)
(1121) (411)
(1211) (1113)
(2111) (1122)
(11111) (1131)
(1221)
(1311)
(2112)
(2211)
(3111)
(11112)
(11121)
(11211)
(12111)
(21111)
(111111)
The version for factorizations is
A348613.
A003242 counts anti-run compositions.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A274174 counts compositions with equal parts contiguous.
A344604 counts alternating compositions with twins.
A344605 counts alternating patterns with twins.
A344654 counts non-twin partitions with no alternating permutation.
A345162 counts normal partitions with no alternating permutation.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions w/ alternating permutation, ranked by
A345172.
A345165 counts partitions w/o alternating permutation, ranked by
A345171.
Patterns:
-
A128761 avoiding (1,2,3) adjacent.
-
A344614 avoiding (1,2,3) and (3,2,1) adjacent.
-
A344615 weakly avoiding (1,2,3) adjacent.
Cf.
A000070,
A008965,
A178470,
A238279,
A333755,
A335126,
A344606,
A344653,
A344740,
A345163,
A345166,
A345169,
A345173,
A348380.
-
wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!wigQ[#]&]],{n,0,15}]
A345170
Number of integer partitions of n with an alternating permutation.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 10, 14, 19, 25, 36, 48, 64, 84, 111, 146, 191, 244, 315, 404, 515, 651, 823, 1035, 1295, 1616, 2011, 2492, 3076, 3787, 4650, 5695, 6952, 8463, 10280, 12460, 15059, 18162, 21858, 26254, 31463, 37641, 44933, 53554, 63704, 75653, 89683, 106162, 125445, 148020
Offset: 0
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(21) (31) (32) (42) (43) (53)
(211) (41) (51) (52) (62)
(221) (321) (61) (71)
(311) (411) (322) (332)
(2211) (331) (422)
(421) (431)
(511) (521)
(3211) (611)
(22111) (3221)
(3311)
(4211)
(22211)
(32111)
Includes all strict partitions
A000009.
Including twins (x,x) gives
A344740.
The Heinz numbers of these partitions are
A345172.
The version for factorizations is
A348379.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A344604 counts alternating compositions with twins.
Cf.
A000070,
A103919,
A335126,
A344605,
A344653,
A344654,
A344742,
A345164,
A345166,
A345167,
A345168,
A345195.
-
wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],wigQ]!={}&]],{n,0,15}]
A025048
Number of up/down (initially ascending) compositions of n.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 7, 11, 16, 26, 41, 64, 100, 158, 247, 389, 612, 960, 1509, 2372, 3727, 5858, 9207, 14468, 22738, 35737, 56164, 88268, 138726, 218024, 342652, 538524, 846358, 1330160, 2090522, 3285526, 5163632, 8115323, 12754288, 20045027, 31503382
Offset: 0
From _Gus Wiseman_, Jan 15 2022: (Start)
The a(1) = 1 through a(7) = 11 up/down compositions:
(1) (2) (3) (4) (5) (6) (7)
(1,2) (1,3) (1,4) (1,5) (1,6)
(1,2,1) (2,3) (2,4) (2,5)
(1,3,1) (1,3,2) (3,4)
(1,4,1) (1,4,2)
(2,3,1) (1,5,1)
(1,2,1,2) (2,3,2)
(2,4,1)
(1,2,1,3)
(1,3,1,2)
(1,2,1,2,1)
(End)
The case of permutations is
A000111.
The version for patterns is
A350354.
These compositions are ranked by
A350355.
A025049
Number of down/up (initially descending) compositions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 6, 9, 14, 23, 35, 55, 87, 136, 214, 337, 528, 830, 1306, 2051, 3223, 5067, 7962, 12512, 19667, 30908, 48574, 76343, 119982, 188565, 296358, 465764, 732006, 1150447, 1808078, 2841627, 4465992, 7018891, 11031101, 17336823, 27247087, 42822355
Offset: 0
From _Gus Wiseman_, Jan 28 2022: (Start)
The a(1) = 1 through a(8) = 14 down/up compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3)
(4,1) (5,1) (5,2) (6,2)
(2,1,2) (2,1,3) (6,1) (7,1)
(3,1,2) (2,1,4) (2,1,5)
(2,1,2,1) (3,1,3) (3,1,4)
(4,1,2) (3,2,3)
(2,1,3,1) (4,1,3)
(3,1,2,1) (5,1,2)
(2,1,3,2)
(2,1,4,1)
(3,1,3,1)
(4,1,2,1)
(2,1,2,1,2)
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, Arndt Compositions with Restricted Parts, Palindromes, and Colored Variants, J. Int. Seq. (2025) Vol. 28, Issue 3, Article 25.3.6. See p. 12.
- Wikipedia, Alternating permutation
The case of permutations is
A000111.
The version for patterns is
A350354.
These compositions are ranked by
A350356.
-
doupQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]y[[m+1]]],{m,1,Length[y]-1}];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],doupQ]],{n,0,15}] (* Gus Wiseman, Jan 28 2022 *)
A344654
Number of integer partitions of n of which every permutation has a consecutive monotone triple, i.e., a triple (..., x, y, z, ...) such that either x <= y <= z or x >= y >= z.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 4, 5, 7, 11, 16, 20, 28, 37, 50, 65, 84, 106, 140, 175, 222, 277, 350, 432, 539, 663, 819, 999, 1225, 1489, 1816, 2192, 2653, 3191, 3846, 4603, 5516, 6578, 7852, 9327, 11083, 13120, 15532, 18328, 21620, 25430, 29904, 35071, 41110, 48080
Offset: 0
The a(3) = 1 through a(9) = 11 partitions:
(111) (1111) (2111) (222) (2221) (2222) (333)
(11111) (3111) (4111) (5111) (3222)
(21111) (31111) (41111) (6111)
(111111) (211111) (221111) (22221)
(1111111) (311111) (51111)
(2111111) (321111)
(11111111) (411111)
(2211111)
(3111111)
(21111111)
(111111111)
The Heinz numbers of these partitions are
A344653, complement
A344742.
The complement is counted by
A344740.
The normal case starts 0, 0, 0, then becomes
A345162, complement
A345163.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A344604 counts wiggly compositions with twins.
A344605 counts wiggly patterns with twins.
A344606 counts wiggly permutations of prime indices with twins.
A344614 counts compositions with no consecutive strictly monotone triple.
A345164 counts wiggly permutations of prime indices.
A345170 counts partitions with a wiggly permutation, ranked by
A345172.
A345192 counts non-wiggly compositions.
Cf.
A000041,
A000070,
A102726,
A103919,
A333489,
A335126,
A344607,
A344615,
A345166,
A345168,
A345169.
-
Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]=={}&]],{n,15}]
A344653
Every permutation of the prime factors of n has a consecutive monotone triple, i.e., a triple (..., x, y, z, ...) such that either x <= y <= z or x >= y >= z.
Original entry on oeis.org
8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 80, 81, 88, 96, 104, 112, 125, 128, 135, 136, 144, 152, 160, 162, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 270, 272, 288, 296, 297, 304, 320, 324, 328, 336, 343, 344, 351, 352, 368, 375, 376, 378, 384
Offset: 1
The sequence of terms together with their prime indices begins:
8: {1,1,1}
16: {1,1,1,1}
24: {1,1,1,2}
27: {2,2,2}
32: {1,1,1,1,1}
40: {1,1,1,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
80: {1,1,1,1,3}
81: {2,2,2,2}
88: {1,1,1,5}
96: {1,1,1,1,1,2}
For example, 36 has prime indices (1,1,2,2), which has the two wiggly permutations (1,2,1,2) and (2,1,2,1), so 36 is not in the sequence.
These partitions are counted by
A344654.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A344604 counts wiggly compositions with twins.
A345164 counts wiggly permutations of prime indices.
A345165 counts partitions without a wiggly permutation, ranked by
A345171.
A345170 counts partitions with a wiggly permutation, ranked by
A345172.
A345192 counts non-wiggly compositions.
Cf.
A001222,
A071321,
A071322,
A316523,
A316524,
A335126,
A344614,
A344615,
A344616,
A344652,
A345163,
A345168,
A345193.
-
Select[Range[100],Select[Permutations[Flatten[ConstantArray@@@FactorInteger[#]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]=={}&]
A345165
Number of integer partitions of n without an alternating permutation.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 5, 5, 8, 11, 17, 20, 29, 37, 51, 65, 85, 106, 141, 175, 223, 277, 351, 432, 540, 663, 820, 999, 1226, 1489, 1817, 2192, 2654, 3191, 3847, 4603, 5517, 6578, 7853, 9327, 11084, 13120, 15533, 18328, 21621, 25430, 29905, 35071, 41111, 48080, 56206, 65554, 76420, 88918
Offset: 0
The a(2) = 1 through a(9) = 11 partitions:
(11) (111) (22) (2111) (33) (2221) (44) (333)
(1111) (11111) (222) (4111) (2222) (3222)
(3111) (31111) (5111) (6111)
(21111) (211111) (41111) (22221)
(111111) (1111111) (221111) (51111)
(311111) (321111)
(2111111) (411111)
(11111111) (2211111)
(3111111)
(21111111)
(111111111)
The Heinz numbers of these partitions are
A345171.
A003242 counts anti-run compositions.
A025047 counts alternating or wiggly compositions.
A344604 counts alternating compositions with twins.
A345164 counts alternating permutations of prime indices, w/ twins
A344606.
Cf.
A000070,
A025048,
A025049,
A103919,
A335126,
A344605,
A344607,
A344615,
A344653,
A345166,
A345167,
A345168,
A345169,
A347706,
A348609.
-
wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],wigQ]=={}&]],{n,0,15}]
Showing 1-10 of 48 results.
Comments