cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 75 results. Next

A025047 Number of alternating compositions, i.e., compositions with alternating increases and decreases, starting with either an increase or a decrease.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 12, 19, 29, 48, 75, 118, 186, 293, 460, 725, 1139, 1789, 2814, 4422, 6949, 10924, 17168, 26979, 42404, 66644, 104737, 164610, 258707, 406588, 639009, 1004287, 1578363, 2480606, 3898599, 6127152, 9629623, 15134213, 23785388, 37381849, 58750468
Offset: 0

Views

Author

Keywords

Comments

Original name: Wiggly sums: number of sums adding to n in which terms alternately increase and decrease or vice versa.

Examples

			From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(7)=19 such compositions of 7:
[ 1] +  [ 1 2 1 2 1 ]
[ 2] +  [ 1 2 1 3 ]
[ 3] +  [ 1 3 1 2 ]
[ 4] +  [ 1 4 2 ]
[ 5] +  [ 1 5 1 ]
[ 6] +  [ 1 6 ]
[ 7] -  [ 2 1 3 1 ]
[ 8] -  [ 2 1 4 ]
[ 9] +  [ 2 3 2 ]
[10] +  [ 2 4 1 ]
[11] +  [ 2 5 ]
[12] -  [ 3 1 2 1 ]
[13] -  [ 3 1 3 ]
[14] +  [ 3 4 ]
[15] -  [ 4 1 2 ]
[16] -  [ 4 3 ]
[17] -  [ 5 2 ]
[18] -  [ 6 1 ]
[19] 0  [ 7 ]
For A025048(7)-1=10 of these the first two parts are increasing (marked by '+'),
and for A025049(7)-1=8 the first two parts are decreasing (marked by '-').
The composition into one part is counted by both A025048 and A025049.
(End)
		

Crossrefs

Dominated by A003242 (anti-run compositions), complement A261983.
The ascending case is A025048.
The descending case is A025049.
The version allowing pairs (x,x) is A344604.
These compositions are ranked by A345167, permutations A349051.
The complement is counted by A345192, ranked by A345168.
The version for patterns is A345194 (with twins: A344605).
A001250 counts alternating permutations, complement A348615.
A011782 counts compositions.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A274174 counts compositions with equal parts contiguous.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions w/o alternating permutation, ranked by A345171.
A345170 counts partitions w/ alternating permutation, ranked by A345172.

Programs

  • Maple
    b:= proc(n, l, t) option remember; `if`(n=0, 1, add(
          b(n-j, j, 1-t), j=`if`(t=1, 1..min(l-1, n), l+1..n)))
        end:
    a:= n-> 1+add(add(b(n-j, j, i), i=0..1), j=1..n-1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 31 2024
  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],wigQ]],{n,0,15}] (* Gus Wiseman, Jun 17 2021 *)
  • PARI
    D(n,f)={my(M=matrix(n,n,j,k,k>=j), s=M[,n]); for(b=1, n, f=!f; M=matrix(n,n,j,k,if(k1, M[j-k,k-1]), M[j-k,n]-M[j-k,k] ))); for(k=2, n, M[,k]+=M[,k-1]); s+=M[,n]); s~}
    seq(n) = concat([1], D(n,0) + D(n,1) - vector(n,j,1)) \\ Andrew Howroyd, Jan 31 2024

Formula

a(n) = A025048(n) + A025049(n) - 1 = sum_k[A059881(n, k)] = sum_k[S(n, k) + T(n, k)] - 1 where if n>k>0 S(n, k) = sum_j[T(n - k, j)] over j>k and T(n, k) = sum_j[S(n - k, j)] over k>j (note reversal) and if n>0 S(n, n) = T(n, n) = 1; S(n, k) = A059882(n, k), T(n, k) = A059883(n, k). - Henry Bottomley, Feb 05 2001
a(n) ~ c * d^n, where d = 1.571630806607064114100138865739690782401305155950789062725..., c = 0.82222360450823867604750473815253345888526601460811483897... . - Vaclav Kotesovec, Sep 12 2014
a(n) = A344604(n) + 1 - n mod 2. - Gus Wiseman, Jun 17 2021

Extensions

Better name using a comment of Franklin T. Adams-Watters by Peter Luschny, Oct 31 2021

A001250 Number of alternating permutations of order n.

Original entry on oeis.org

1, 1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042, 707584, 5405530, 44736512, 398721962, 3807514624, 38783024290, 419730685952, 4809759350882, 58177770225664, 740742376475050, 9902996106248192, 138697748786275802, 2030847773013704704, 31029068327114173810
Offset: 0

Views

Author

Keywords

Comments

For n>1, a(n) is the number of permutations of order n with the length of longest run equal 2.
Boustrophedon transform of the Euler numbers (A000111). [Berry et al., 2013] - N. J. A. Sloane, Nov 18 2013
Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i >= j < k or i < j >= k. a(4) = 10: 0010, 0011, 0020, 0021, 0022, 0101, 0102, 0103, 0112, 0113. - Alois P. Heinz, Oct 16 2019

Examples

			1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 32*x^5 + 122*x^6 + 544*x^7 + 2770*x^8 + ...
From _Gus Wiseman_, Jun 21 2021: (Start)
The a(0) = 1 through a(4) = 10 permutations:
  ()  (1)  (1,2)  (1,3,2)  (1,3,2,4)
           (2,1)  (2,1,3)  (1,4,2,3)
                  (2,3,1)  (2,1,4,3)
                  (3,1,2)  (2,3,1,4)
                           (2,4,1,3)
                           (3,1,4,2)
                           (3,2,4,1)
                           (3,4,1,2)
                           (4,1,3,2)
                           (4,2,3,1)
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000111. A diagonal of A010094.
The version for permutations of prime indices is A345164.
The version for compositions is A025047, ranked by A345167.
The version for patterns is A345194.
A049774 counts permutations avoiding adjacent (1,2,3).
A344614 counts compositions avoiding adjacent (1,2,3) and (3,2,1).
A344615 counts compositions avoiding the weak adjacent pattern (1,2,3).
A344654 counts partitions without a wiggly permutation, ranked by A344653.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions, ranked by A345168.
Row sums of A104345.

Programs

  • Haskell
    a001250 n = if n == 1 then 1 else 2 * a000111 n
    -- Reinhard Zumkeller, Sep 17 2014
    
  • Maple
    # With Eulerian polynomials:
    A := (n, x) -> `if`(n<2, 1/2/(1+I)^(1-n), add(add((-1)^j*binomial(n+1, j)*(m+1-j)^n, j=0..m)*x^m, m=0..n-1)):
    A001250 := n -> 2*(I-1)^(1-n)*exp(I*(n-1)*Pi/2)*A(n,I);
    seq(A001250(i), i=0..22); # Peter Luschny, May 27 2012
    # second Maple program:
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> `if`(n<2, 1, 2)*b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 29 2015
  • Mathematica
    a[n_] := 4*Abs[PolyLog[-n, I]]; a[0] = a[1] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 09 2016, after M. F. Hasler *)
    Table[Length[Select[Permutations[Range[n]],And@@(!(OrderedQ[#]||OrderedQ[Reverse[#]])&/@Partition[#,3,1])&]],{n,8}] (* Gus Wiseman, Jun 21 2021 *)
    a[0]:=1; a[1]:=1; a[n_]:=a[n]=1/(n (n-1)) Sum[a[n-1-k] a[k] k, {k,1, n-1}]; Join[{a[0], a[1]}, Map[2 #! a[#]&, Range[2,24]]] (* Oliver Seipel, May 27 2024 *)
  • PARI
    {a(n) = local(v=[1], t); if( n<0, 0, for( k=2, n+3, t=0; v = vector( k, i, if( i>1, t += v[k+1 - i]))); v[3])} /* Michael Somos, Feb 03 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( (tan(x + x * O(x^n)) + 1 / cos(x + x * O(x^n)))^2, n))} /* Michael Somos, Feb 05 2011 */
    
  • PARI
    A001250(n)=sum(m=0,n\2,my(k);(-1)^m*sum(j=0,k=n+1-2*m,binomial(k,j)*(-1)^j*(k-2*j)^(n+1))/k>>k)*2-(n==1)  \\ M. F. Hasler, May 19 2012
    
  • PARI
    A001250(n)=4*abs(polylog(-n,I))-(n==1)  \\ M. F. Hasler, May 20 2012
    
  • PARI
    my(x='x+O('x^66), egf=1+2*(tan(x)+1/cos(x))-2-x); Vec(serlaplace(egf)) /* Joerg Arndt, May 28 2012 */
    
  • Python
    from itertools import accumulate, islice
    def A001250_gen(): # generator of terms
        yield from (1,1)
        blist = (0,2)
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
    A001250_list = list(islice(A001250_gen(),40)) # Chai Wah Wu, Jun 09-11 2022
    
  • Python
    from sympy import bernoulli, euler
    def A001250(n): return 1 if n<2 else abs(((1<Chai Wah Wu, Nov 13 2024
  • Sage
    # Algorithm of L. Seidel (1877)
    def A001250_list(n) :
        R = [1]; A = {-1:0, 0:2}; k = 0; e = 1
        for i in (0..n) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) : Am += A[k]; A[k] = Am; k += e
            if i > 1 : R.append(A[-i//2] if i%2 == 0 else A[i//2])
        return R
    A001250_list(22) # Peter Luschny, Mar 31 2012
    

Formula

a(n) = coefficient of x^(n-1)/(n-1)! in power series expansion of (tan(x) + sec(x))^2 = (tan(x)+1/cos(x))^2.
a(n) = coefficient of x^n/n! in power series expansion of 2*(tan(x) + sec(x)) - 2 - x. - Michael Somos, Feb 05 2011
For n>1, a(n) = 2 * A000111(n). - Michael Somos, Mar 19 2011
a(n) = 4*|Li_{-n}(i)| - [n=1] = Sum_{m=0..n/2} (-1)^m*2^(1-k)*Sum_{j=0..k} binomial(k,j)*(-1)^j*(k-2*j)^(n+1)/k - [n=1], where k = k(m) = n+1-2*m and [n=1] equals 1 if n=1 and zero else; Li denotes the polylogarithm (and i^2 = -1). - M. F. Hasler, May 20 2012
From Sergei N. Gladkovskii, Jun 18 2012: (Start)
Let E(x) = 2/(1-sin(x))-1 (essentially the e.g.f.), then
E(x) = -1 + 2*(-1/x + 1/(1-x)/x - x^3/((1-x)*((1-x)*G(0) + x^2))) where G(k) = (2*k+2)*(2*k+3)-x^2+(2*k+2)*(2*k+3)*x^2/G(k+1); (continued fraction, Euler's 1st kind, 1-step).
E(x) = -1 + 2*(-1/x + 1/(1-x)/x - x^3/((1-x)*((1-x)*G(0) + x^2))) where G(k) = 8*k + 6 - x^2/(1 + (2*k+2)*(2*k+3)/G(k+1)); (continued fraction, Euler's 2nd kind, 2-step).
E(x) = (tan(x) + sec(x))^2 = -1 + 2/(1-x*G(0)) where G(k) = 1 - x^2/(2*(2*k+1)*(4*k+3) - 2*x^2*(2*k+1)*(4*k+3)/(x^2 - 4*(k+1)*(4*k+5)/G(k+1))); (continued fraction, 3rd kind, 3-step).
(End)
G.f.: conjecture: 2*T(0)/(1-x) -1, where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*(k+1))*(1-x*(k+2))/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2013
a(n) ~ 2^(n+3) * n! / Pi^(n+1). - Vaclav Kotesovec, Sep 06 2014
a(n) = Sum_{k=0..n-1} A109449(n-1,k)*A000111(k). - Reinhard Zumkeller, Sep 17 2014

Extensions

Edited by Max Alekseyev, May 04 2012
a(0)=1 prepended by Alois P. Heinz, Nov 29 2015

A345192 Number of non-alternating compositions of n.

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 20, 45, 99, 208, 437, 906, 1862, 3803, 7732, 15659, 31629, 63747, 128258, 257722, 517339, 1037652, 2079984, 4167325, 8346204, 16710572, 33449695, 66944254, 133959021, 268028868, 536231903, 1072737537, 2145905285, 4292486690, 8586035993, 17173742032, 34350108745, 68704342523, 137415168084
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

First differs from A261983 at a(6) = 20, A261983(6) = 18.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(2) = 1 through a(6) = 20 compositions:
  (11)  (111)  (22)    (113)    (33)
               (112)   (122)    (114)
               (211)   (221)    (123)
               (1111)  (311)    (222)
                       (1112)   (321)
                       (1121)   (411)
                       (1211)   (1113)
                       (2111)   (1122)
                       (11111)  (1131)
                                (1221)
                                (1311)
                                (2112)
                                (2211)
                                (3111)
                                (11112)
                                (11121)
                                (11211)
                                (12111)
                                (21111)
                                (111111)
		

Crossrefs

The complement is counted by A025047 (ascend: A025048, descend: A025049).
Dominates A261983 (non-anti-run compositions), ranked by A348612.
These compositions are ranked by A345168, complement A345167.
The case without twins is A348377.
The version for factorizations is A348613.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A011782 counts compositions.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A274174 counts compositions with equal parts contiguous.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A344605 counts alternating patterns with twins.
A344654 counts non-twin partitions with no alternating permutation.
A345162 counts normal partitions with no alternating permutation.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions w/ alternating permutation, ranked by A345172.
A345165 counts partitions w/o alternating permutation, ranked by A345171.
Patterns:
- A128761 avoiding (1,2,3) adjacent.
- A344614 avoiding (1,2,3) and (3,2,1) adjacent.
- A344615 weakly avoiding (1,2,3) adjacent.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!wigQ[#]&]],{n,0,15}]

Formula

a(n) = A011782(n) - A025047(n).

A345170 Number of integer partitions of n with an alternating permutation.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 10, 14, 19, 25, 36, 48, 64, 84, 111, 146, 191, 244, 315, 404, 515, 651, 823, 1035, 1295, 1616, 2011, 2492, 3076, 3787, 4650, 5695, 6952, 8463, 10280, 12460, 15059, 18162, 21858, 26254, 31463, 37641, 44933, 53554, 63704, 75653, 89683, 106162, 125445, 148020
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

First differs from A325534 at a(10) = 25, A325534(10) = 26. The first separable partition without an alternating permutation is (3,2,2,2,1).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).

Examples

			The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)  (3)   (4)    (5)    (6)     (7)      (8)
            (21)  (31)   (32)   (42)    (43)     (53)
                  (211)  (41)   (51)    (52)     (62)
                         (221)  (321)   (61)     (71)
                         (311)  (411)   (322)    (332)
                                (2211)  (331)    (422)
                                        (421)    (431)
                                        (511)    (521)
                                        (3211)   (611)
                                        (22111)  (3221)
                                                 (3311)
                                                 (4211)
                                                 (22211)
                                                 (32111)
		

Crossrefs

Includes all strict partitions A000009.
Including twins (x,x) gives A344740.
The normal case is A345163 (complement: A345162).
The complement is counted by A345165, ranked by A345171.
The Heinz numbers of these partitions are A345172.
The version for factorizations is A348379.
A000041 counts integer partitions.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating compositions (ascend: A025048, descend: A025049).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],wigQ]!={}&]],{n,0,15}]

Extensions

a(26)-a(32) from Robert Price, Jun 23 2021
a(33)-a(48) from Alois P. Heinz, Jun 23 2021
a(49) onwards from Joseph Likar, Sep 05 2023

A025048 Number of up/down (initially ascending) compositions of n.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 11, 16, 26, 41, 64, 100, 158, 247, 389, 612, 960, 1509, 2372, 3727, 5858, 9207, 14468, 22738, 35737, 56164, 88268, 138726, 218024, 342652, 538524, 846358, 1330160, 2090522, 3285526, 5163632, 8115323, 12754288, 20045027, 31503382
Offset: 0

Views

Author

Keywords

Comments

Original name was: Ascending wiggly sums: number of sums adding to n in which terms alternately increase and decrease.
A composition is up/down if it is alternately strictly increasing and strictly decreasing, starting with an increase. For example, the partition (3,2,2,2,1) has no up/down permutations, even though it does have the anti-run permutation (2,3,2,1,2). - Gus Wiseman, Jan 15 2022

Examples

			From _Gus Wiseman_, Jan 15 2022: (Start)
The a(1) = 1 through a(7) = 11 up/down compositions:
  (1)  (2)  (3)    (4)      (5)      (6)        (7)
            (1,2)  (1,3)    (1,4)    (1,5)      (1,6)
                   (1,2,1)  (2,3)    (2,4)      (2,5)
                            (1,3,1)  (1,3,2)    (3,4)
                                     (1,4,1)    (1,4,2)
                                     (2,3,1)    (1,5,1)
                                     (1,2,1,2)  (2,3,2)
                                                (2,4,1)
                                                (1,2,1,3)
                                                (1,3,1,2)
                                                (1,2,1,2,1)
(End)
		

Crossrefs

The case of permutations is A000111.
The undirected version is A025047, ranked by A345167.
The down/up version is A025049, ranked by A350356.
The strict case is A129838, undirected A349054.
The weak version is A129852, down/up A129853.
The version for patterns is A350354.
These compositions are ranked by A350355.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz compositions, complement A261983.
A011782 counts compositions, unordered A000041.
A325534 counts separable partitions, complement A325535.
A345192 counts non-alternating compositions, ranked by A345168.
A345194 counts alternating patterns, complement A350252.
A349052 counts weakly alternating compositions, complement A349053.

Programs

  • Mathematica
    updoQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]>y[[m+1]],y[[m]]Gus Wiseman, Jan 15 2022 *)

Formula

a(n) = 1 + A025047(n) - A025049(n) = Sum_k A059882(n,k). - Henry Bottomley, Feb 05 2001
a(n) ~ c * d^n, where d = 1.571630806607064114100138865739690782401305155950789062725011227781640624..., c = 0.4408955566119650057730070154620695491718230084159159991449729825619... . - Vaclav Kotesovec, Sep 12 2014

Extensions

Name and offset changed by Gus Wiseman, Jan 15 2022

A025049 Number of down/up (initially descending) compositions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 9, 14, 23, 35, 55, 87, 136, 214, 337, 528, 830, 1306, 2051, 3223, 5067, 7962, 12512, 19667, 30908, 48574, 76343, 119982, 188565, 296358, 465764, 732006, 1150447, 1808078, 2841627, 4465992, 7018891, 11031101, 17336823, 27247087, 42822355
Offset: 0

Views

Author

Keywords

Comments

Original name was: Descending wiggly sums: number of sums adding to n in which terms alternately decrease and increase.
A composition is down/up if it is alternately strictly decreasing and strictly increasing, starting with a decrease. For example, the partition (3,2,2,2,1) has no down/up permutations, even though it does have the anti-run permutation (2,1,2,3,2). - Gus Wiseman, Jan 28 2022

Examples

			From _Gus Wiseman_, Jan 28 2022: (Start)
The a(1) = 1 through a(8) = 14 down/up compositions:
  (1)  (2)  (3)    (4)    (5)      (6)        (7)        (8)
            (2,1)  (3,1)  (3,2)    (4,2)      (4,3)      (5,3)
                          (4,1)    (5,1)      (5,2)      (6,2)
                          (2,1,2)  (2,1,3)    (6,1)      (7,1)
                                   (3,1,2)    (2,1,4)    (2,1,5)
                                   (2,1,2,1)  (3,1,3)    (3,1,4)
                                              (4,1,2)    (3,2,3)
                                              (2,1,3,1)  (4,1,3)
                                              (3,1,2,1)  (5,1,2)
                                                         (2,1,3,2)
                                                         (2,1,4,1)
                                                         (3,1,3,1)
                                                         (4,1,2,1)
                                                         (2,1,2,1,2)
(End)
		

Crossrefs

The case of permutations is A000111.
The undirected version is A025047, ranked by A345167.
The up/down version is A025048, ranked by A350355.
The strict case is A129838, undirected A349054.
The weak version is A129853, up/down A129852.
The version for patterns is A350354.
These compositions are ranked by A350356.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz compositions, complement A261983.
A011782 counts compositions, unordered A000041.
A325534 counts separable partitions, complement A325535.
A345192 counts non-alternating compositions, ranked by A345168.
A345194 counts alternating patterns, complement A350252.
A349052 counts weakly alternating compositions, complement A349053.

Programs

  • Mathematica
    doupQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],doupQ]],{n,0,15}] (* Gus Wiseman, Jan 28 2022 *)

Formula

a(n) = 1 + A025047(n) - A025048(n) = Sum_{k=1..n} A059883(n,k). - Henry Bottomley, Feb 05 2001

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 20 2022
Name changed by Gus Wiseman, Jan 28 2022

A351014 Number of distinct runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 1, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The number 3310 has binary expansion 110011101110 and standard composition (1,3,1,1,2,1,1,2), with runs (1), (3), (1,1), (2), (1,1), (2), of which 4 are distinct, so a(3310) = 4.
		

Crossrefs

Counting not necessarily distinct runs gives A124767.
Using binary expansions instead of standard compositions gives A297770.
Positions of first appearances are A351015.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Split[stc[n]]]],{n,0,100}]

A345165 Number of integer partitions of n without an alternating permutation.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 5, 8, 11, 17, 20, 29, 37, 51, 65, 85, 106, 141, 175, 223, 277, 351, 432, 540, 663, 820, 999, 1226, 1489, 1817, 2192, 2654, 3191, 3847, 4603, 5517, 6578, 7853, 9327, 11084, 13120, 15533, 18328, 21621, 25430, 29905, 35071, 41111, 48080, 56206, 65554, 76420, 88918
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(2) = 1 through a(9) = 11 partitions:
  (11)  (111)  (22)    (2111)   (33)      (2221)     (44)        (333)
               (1111)  (11111)  (222)     (4111)     (2222)      (3222)
                                (3111)    (31111)    (5111)      (6111)
                                (21111)   (211111)   (41111)     (22221)
                                (111111)  (1111111)  (221111)    (51111)
                                                     (311111)    (321111)
                                                     (2111111)   (411111)
                                                     (11111111)  (2211111)
                                                                 (3111111)
                                                                 (21111111)
                                                                 (111111111)
		

Crossrefs

Excluding twins (x,x) gives A344654, complement A344740.
The normal case is A345162, complement A345163.
The complement is counted by A345170, ranked by A345172.
The Heinz numbers of these partitions are A345171.
The version for factorizations is A348380, complement A348379.
A version for ordered factorizations is A348613, complement A348610.
A000041 counts integer partitions.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A345164 counts alternating permutations of prime indices, w/ twins A344606.
A345192 counts non-alternating compositions, without twins A348377.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],wigQ]=={}&]],{n,0,15}]

Extensions

a(26) onwards by Joseph Likar, Aug 21 2023

A345168 Numbers k such that the k-th composition in standard order is not alternating.

Original entry on oeis.org

3, 7, 10, 11, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31, 35, 36, 37, 39, 42, 43, 46, 47, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 69, 71, 73, 74, 75, 78, 79, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 99, 100, 101, 103, 104, 105, 106, 107, 110
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence of terms together with their binary indices begins:
     3: (1,1)          35: (4,1,1)        59: (1,1,2,1,1)
     7: (1,1,1)        36: (3,3)          60: (1,1,1,3)
    10: (2,2)          37: (3,2,1)        61: (1,1,1,2,1)
    11: (2,1,1)        39: (3,1,1,1)      62: (1,1,1,1,2)
    14: (1,1,2)        42: (2,2,2)        63: (1,1,1,1,1,1)
    15: (1,1,1,1)      43: (2,2,1,1)      67: (5,1,1)
    19: (3,1,1)        46: (2,1,1,2)      69: (4,2,1)
    21: (2,2,1)        47: (2,1,1,1,1)    71: (4,1,1,1)
    23: (2,1,1,1)      51: (1,3,1,1)      73: (3,3,1)
    26: (1,2,2)        52: (1,2,3)        74: (3,2,2)
    27: (1,2,1,1)      53: (1,2,2,1)      75: (3,2,1,1)
    28: (1,1,3)        55: (1,2,1,1,1)    78: (3,1,1,2)
    29: (1,1,2,1)      56: (1,1,4)        79: (3,1,1,1,1)
    30: (1,1,1,2)      57: (1,1,3,1)      83: (2,3,1,1)
    31: (1,1,1,1,1)    58: (1,1,2,2)      84: (2,2,3)
		

Crossrefs

The complement is A345167.
These compositions are counted by A345192.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A025047 counts alternating or wiggly compositions, directed A025048, A025049.
A344604 counts alternating compositions with twins.
A345194 counts alternating patterns (with twins: A344605).
A345164 counts alternating permutations of prime indices (with twins: A344606).
A345165 counts partitions without a alternating permutation, ranked by A345171.
A345170 counts partitions with a alternating permutation, ranked by A345172.
A348610 counts alternating ordered factorizations, complement A348613.
Statistics of standard compositions:
- Length is A000120.
- Constant runs are A124767.
- Heinz number is A333219.
- Number of maximal anti-runs is A333381.
- Runs-resistance is A333628.
- Number of distinct parts is A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are A114994.
- Weakly increasing compositions (multisets) are A225620.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Anti-run compositions are A333489.
- Non-anti-run compositions are A348612.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,100],Not@*wigQ@*stc]

A348615 Number of non-alternating permutations of {1...n}.

Original entry on oeis.org

0, 0, 0, 2, 14, 88, 598, 4496, 37550, 347008, 3527758, 39209216, 473596070, 6182284288, 86779569238, 1303866853376, 20884006863710, 355267697410048, 6397563946377118, 121586922638606336, 2432161265800164950, 51081039175603191808, 1123862030028821404198
Offset: 0

Views

Author

Gus Wiseman, Nov 03 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.
Also permutations of {1...n} matching the consecutive patterns (1,2,3) or (3,2,1). Matching only one of these gives A065429.

Examples

			The a(4) = 14 permutations:
  (1,2,3,4)  (3,1,2,4)
  (1,2,4,3)  (3,2,1,4)
  (1,3,4,2)  (3,4,2,1)
  (1,4,3,2)  (4,1,2,3)
  (2,1,3,4)  (4,2,1,3)
  (2,3,4,1)  (4,3,1,2)
  (2,4,3,1)  (4,3,2,1)
		

Crossrefs

The complement is counted by A001250, ranked by A333218.
The complementary version for compositions is A025047, ranked by A345167.
A directed version is A065429, complement A049774.
The version for compositions is A345192, ranked by A345168.
The version for ordered factorizations is A348613, complement A348610.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A348379 counts factorizations with an alternating permutation.
A348380 counts factorizations without an alternating permutation.

Programs

  • Maple
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> n!-`if`(n<2, 1, 2)*b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 04 2021
  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] ==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Permutations[Range[n]],!wigQ[#]&]],{n,0,6}]
  • Python
    from itertools import accumulate, count, islice
    def A348615_gen(): # generator of terms
        yield from (0,0)
        blist, f = (0,2), 1
        for n in count(2):
            f *= n
            yield f - (blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
    A348615_list = list(islice(A348615_gen(),40)) # Chai Wah Wu, Jun 09-11 2022

Formula

a(n) = n! - A001250(n).
Showing 1-10 of 75 results. Next