A353837 Number of integer partitions of n with all distinct run-sums.
1, 1, 2, 3, 4, 7, 10, 14, 17, 28, 35, 49, 62, 85, 107, 149, 174, 238, 305, 384, 476, 614, 752, 950, 1148, 1451, 1763, 2205, 2654, 3259, 3966, 4807, 5773, 7039, 8404, 10129, 12140, 14528, 17288, 20668, 24505, 29062, 34437, 40704, 48059, 56748, 66577, 78228
Offset: 0
Keywords
Examples
The a(0) = 1 through a(6) = 10 partitions: () (1) (2) (3) (4) (5) (6) (11) (21) (22) (32) (33) (111) (31) (41) (42) (1111) (221) (51) (311) (222) (2111) (321) (11111) (411) (2211) (21111) (111111)
Links
- Max Alekseyev, Table of n, a(n) for n = 0..100
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Total/@Split[#]&]],{n,0,15}]
-
Sage
a353837 = lambda n: sum( abs(BipartiteGraph( Matrix(len(p), len(D:=list(set.union(*map(lambda t: set(divisors(t)),p)))), lambda i,j: p[i]%D[j]==0) ).matching_polynomial()[len(D)-len(p)]) for p in Partitions(n,max_slope=-1) ) # Max Alekseyev, Sep 11 2023
Comments