cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A351294 Numbers whose multiset of prime factors has at least one permutation with all distinct run-lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2022

Keywords

Comments

First differs from A130091 (Wilf partitions) in having 216.
See A239455 for the definition of Look-and-Say partitions.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      1: ()            20: (3,1,1)         47: (15)
      2: (1)           23: (9)             48: (2,1,1,1,1)
      3: (2)           24: (2,1,1,1)       49: (4,4)
      4: (1,1)         25: (3,3)           50: (3,3,1)
      5: (3)           27: (2,2,2)         52: (6,1,1)
      7: (4)           28: (4,1,1)         53: (16)
      8: (1,1,1)       29: (10)            54: (2,2,2,1)
      9: (2,2)         31: (11)            56: (4,1,1,1)
     11: (5)           32: (1,1,1,1,1)     59: (17)
     12: (2,1,1)       37: (12)            61: (18)
     13: (6)           40: (3,1,1,1)       63: (4,2,2)
     16: (1,1,1,1)     41: (13)            64: (1,1,1,1,1,1)
     17: (7)           43: (14)            67: (19)
     18: (2,2,1)       44: (5,1,1)         68: (7,1,1)
     19: (8)           45: (3,2,2)         71: (20)
For example, the prime indices of 216 are {1,1,1,2,2,2}, and there are four permutations with distinct run-lengths: (1,1,2,2,2,1), (1,2,2,2,1,1), (2,1,1,1,2,2), (2,2,1,1,1,2); so 216 is in the sequence. It is the Heinz number of the Look-and-Say partition of (3,3,2,1).
		

Crossrefs

The Wilf case (distinct multiplicities) is A130091, counted by A098859.
The complement of the Wilf case is A130092, counted by A336866.
These partitions appear to be counted by A239455.
A variant for runs is A351201, counted by A351203 (complement A351204).
The complement is A351295, counted by A351293.
A032020 = number of binary expansions with distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A056239 = sum of prime indices, row sums of A112798.
A165413 = number of run-lengths in binary expansion, for all runs A297770.
A181819 = Heinz number of prime signature (prime shadow).
A182850/A323014 = frequency depth, counted by A225485/A325280.
A320922 ranks graphical partitions, complement A339618, counted by A000569.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A333489 ranks anti-runs, complement A348612.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],UnsameQ@@Length/@Split[#]&]!={}&]

Extensions

Name edited by Gus Wiseman, Aug 13 2025

A351295 Numbers whose multiset of prime factors has no permutation with all distinct run-lengths.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

First differs from A130092 (non-Wilf partitions) in lacking 216.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      6: (2,1)         46: (9,1)         84: (4,2,1,1)
     10: (3,1)         51: (7,2)         85: (7,3)
     14: (4,1)         55: (5,3)         86: (14,1)
     15: (3,2)         57: (8,2)         87: (10,2)
     21: (4,2)         58: (10,1)        90: (3,2,2,1)
     22: (5,1)         60: (3,2,1,1)     91: (6,4)
     26: (6,1)         62: (11,1)        93: (11,2)
     30: (3,2,1)       65: (6,3)         94: (15,1)
     33: (5,2)         66: (5,2,1)       95: (8,3)
     34: (7,1)         69: (9,2)        100: (3,3,1,1)
     35: (4,3)         70: (4,3,1)      102: (7,2,1)
     36: (2,2,1,1)     74: (12,1)       105: (4,3,2)
     38: (8,1)         77: (5,4)        106: (16,1)
     39: (6,2)         78: (6,2,1)      110: (5,3,1)
     42: (4,2,1)       82: (13,1)       111: (12,2)
For example, the prime indices of 150 are {1,2,3,3}, with permutations and run-lengths (right):
  (3,3,2,1) -> (2,1,1)
  (3,3,1,2) -> (2,1,1)
  (3,2,3,1) -> (1,1,1,1)
  (3,2,1,3) -> (1,1,1,1)
  (3,1,3,2) -> (1,1,1,1)
  (3,1,2,3) -> (1,1,1,1)
  (2,3,3,1) -> (1,2,1)
  (2,3,1,3) -> (1,1,1,1)
  (2,1,3,3) -> (1,1,2)
  (1,3,3,2) -> (1,2,1)
  (1,3,2,3) -> (1,1,1,1)
  (1,2,3,3) -> (1,1,2)
Since none have all distinct run-lengths, 150 is in the sequence.
		

Crossrefs

Wilf partitions are counted by A098859, ranked by A130091.
Non-Wilf partitions are counted by A336866, ranked by A130092.
A variant for runs is A351201, counted by A351203 (complement A351204).
These partitions appear to be counted by A351293.
The complement is A351294, apparently counted by A239455.
A032020 = number of binary expansions with distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A056239 = sum of prime indices, row sums of A112798.
A165413 = number of distinct run-lengths in binary expansion.
A181819 = Heinz number of prime signature (prime shadow).
A182850/A323014 = frequency depth, counted by A225485/A325280.
A297770 = number of distinct runs in binary expansion.
A320922 ranks graphical partitions, complement A339618, counted by A000569.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A329747 = runs-resistance, counted by A329746.
A333489 ranks anti-runs, complement A348612.
A351017 = binary words with all distinct run-lengths, for all runs A351016.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],UnsameQ@@Length/@Split[#]&]=={}&]

Extensions

Name edited by Gus Wiseman, Aug 13 2025

A353837 Number of integer partitions of n with all distinct run-sums.

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 10, 14, 17, 28, 35, 49, 62, 85, 107, 149, 174, 238, 305, 384, 476, 614, 752, 950, 1148, 1451, 1763, 2205, 2654, 3259, 3966, 4807, 5773, 7039, 8404, 10129, 12140, 14528, 17288, 20668, 24505, 29062, 34437, 40704, 48059, 56748, 66577, 78228
Offset: 0

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

The run-sums of a sequence are the sums of its maximal consecutive constant subsequences (runs). For example, the run-sums of (2,2,1,1,1,3,2,2) are (4,3,3,4). The first partition whose run-sums are not all distinct is (2,1,1).

Examples

			The a(0) = 1 through a(6) = 10 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (32)     (33)
                 (111)  (31)    (41)     (42)
                        (1111)  (221)    (51)
                                (311)    (222)
                                (2111)   (321)
                                (11111)  (411)
                                         (2211)
                                         (21111)
                                         (111111)
		

Crossrefs

For multiplicities instead of run-sums we have A098859, ranked by A130091.
For equal run-sums we have A304442, ranked by A353833 (nonprime A353834).
These partitions are ranked by A353838, complement A353839.
The version for compositions is A353850, ranked by A353852.
The weak version (rucksack partitions) is A353864, ranked by A353866.
The weak perfect version is A353865, ranked by A353867.
A005811 counts runs in binary expansion.
A275870 counts collapsible partitions, ranked by A300273.
A351014 counts distinct runs in standard compositions.
A353832 represents the operation of taking run-sums of a partition.
A353840-A353846 pertain to partition run-sum trajectory.
A353849 counts distinct run-sums in standard compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Total/@Split[#]&]],{n,0,15}]
  • Sage
    a353837 = lambda n: sum( abs(BipartiteGraph( Matrix(len(p), len(D:=list(set.union(*map(lambda t: set(divisors(t)),p)))), lambda i,j: p[i]%D[j]==0) ).matching_polynomial()[len(D)-len(p)]) for p in Partitions(n,max_slope=-1) ) # Max Alekseyev, Sep 11 2023

A353847 Composition run-sum transformation in terms of standard composition numbers. The a(k)-th composition in standard order is the sequence of run-sums of the k-th composition in standard order. Takes each index of a row of A066099 to the index of the row consisting of its run-sums.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 6, 4, 8, 9, 8, 10, 12, 13, 10, 8, 16, 17, 18, 18, 20, 17, 22, 20, 24, 25, 24, 26, 20, 21, 18, 16, 32, 33, 34, 34, 32, 37, 38, 36, 40, 41, 32, 34, 44, 45, 42, 40, 48, 49, 50, 50, 52, 49, 54, 52, 40, 41, 40, 42, 36, 37, 34, 32, 64, 65, 66, 66
Offset: 0

Views

Author

Gus Wiseman, May 30 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			As a triangle:
   0
   1
   2  2
   4  5  6  4
   8  9  8 10 12 13 10  8
  16 17 18 18 20 17 22 20 24 25 24 26 20 21 18 16
These are the standard composition numbers of the following compositions (transposed):
  ()  (1)  (2)  (3)    (4)      (5)
           (2)  (2,1)  (3,1)    (4,1)
                (1,2)  (4)      (3,2)
                (3)    (2,2)    (3,2)
                       (1,3)    (2,3)
                       (1,2,1)  (4,1)
                       (2,2)    (2,1,2)
                       (4)      (2,3)
                                (1,4)
                                (1,3,1)
                                (1,4)
                                (1,2,2)
                                (2,3)
                                (2,2,1)
                                (3,2)
                                (5)
		

Crossrefs

Standard compositions are listed by A066099.
The version for partitions is A353832.
The run-sums themselves are listed by A353932, with A353849 distinct terms.
A005811 counts runs in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.
A353863 counts run-sum-complete partitions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Total/@Split[stc[n]]],{n,0,100}]

A351014 Number of distinct runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 1, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The number 3310 has binary expansion 110011101110 and standard composition (1,3,1,1,2,1,1,2), with runs (1), (3), (1,1), (2), (1,1), (2), of which 4 are distinct, so a(3310) = 4.
		

Crossrefs

Counting not necessarily distinct runs gives A124767.
Using binary expansions instead of standard compositions gives A297770.
Positions of first appearances are A351015.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Split[stc[n]]]],{n,0,100}]

A353850 Number of integer compositions of n with all distinct run-sums.

Original entry on oeis.org

1, 1, 2, 4, 5, 12, 24, 38, 52, 111, 218, 286, 520, 792, 1358, 2628, 4155, 5508, 9246, 13182, 23480, 45150, 54540, 94986, 146016, 213725, 301104, 478586, 851506, 1302234, 1775482, 2696942, 3746894, 6077784, 8194466, 12638334, 21763463, 28423976, 45309850, 62955524, 94345474
Offset: 0

Views

Author

Gus Wiseman, May 31 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(0) = 1 through a(5) = 12 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (1111)  (41)
                                (113)
                                (122)
                                (221)
                                (311)
                                (1112)
                                (2111)
                                (11111)
For n=4, (211) is invalid because the two runs (2) and (11) have the same sum. - _Joseph Likar_, Aug 04 2023
		

Crossrefs

For distinct parts instead of run-sums we have A032020.
For distinct multiplicities instead of run-sums we have A242882.
For distinct run-lengths instead of run-sums we have A329739, ptns A098859.
For runs instead of run-sums we have A351013.
For partitions we have A353837, ranked by A353838 (complement A353839).
For equal instead of distinct run-sums we have A353851, ptns A304442.
These compositions are ranked by A353852.
The weak version (rucksack compositions) is A354580, ranked by A354581.
A003242 counts anti-run compositions, ranked by A333489.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A175413 lists numbers whose binary expansion has all distinct runs.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353847 gives composition run-sum transformation.
A353929 counts distinct runs in binary expansion, firsts A353930.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@Total/@Split[#]&]],{n,0,15}]

Extensions

Terms a(21) and onwards from Joseph Likar, Aug 04 2023

A351013 Number of integer compositions of n with all distinct runs.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 26, 48, 88, 161, 294, 512, 970, 1634, 2954, 5156, 9119, 15618, 27354, 46674, 80130, 138078, 232286, 394966, 665552, 1123231, 1869714, 3146410, 5186556, 8620936, 14324366, 23529274, 38564554, 63246744, 103578914, 167860584, 274465845
Offset: 0

Views

Author

Gus Wiseman, Feb 09 2022

Keywords

Examples

			The a(1) = 1 through a(5) = 14 compositions:
  (1)  (2)    (3)      (4)        (5)
       (1,1)  (1,2)    (1,3)      (1,4)
              (2,1)    (2,2)      (2,3)
              (1,1,1)  (3,1)      (3,2)
                       (1,1,2)    (4,1)
                       (2,1,1)    (1,1,3)
                       (1,1,1,1)  (1,2,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,1,2)
                                  (1,1,2,1)
                                  (1,2,1,1)
                                  (2,1,1,1)
                                  (1,1,1,1,1)
For example, the composition c = (3,1,1,1,1,2,1,1,3,4,1,1) has runs (3), (1,1,1,1), (2), (1,1), (3), (4), (1,1), and since (3) and (1,1) both appear twice, c is not counted under a(20).
		

Crossrefs

The version for run-lengths instead of runs is A329739, normal A329740.
These compositions are ranked by A351290, complement A351291.
A000005 counts constant compositions, ranked by A272919.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A059966 counts binary Lyndon compositions, necklaces A008965, aperiodic A000740.
A116608 counts compositions by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329744 counts compositions by runs-resistance.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Split[#]&]],{n,0,10}]
  • PARI
    \\ here LahI is A111596 as row polynomials.
    LahI(n,y) = {sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
    S(n) = {my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p,i,y)*LahI(i,y))}
    seq(n)={my(q=S(n)); [subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, subst(q + O(x*x^(n\k)), x, x^k)))]} \\ Andrew Howroyd, Feb 12 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 12 2022

A353932 Irregular triangle read by rows where row k lists the run-sums of the k-th composition in standard order.

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 1, 2, 3, 4, 3, 1, 4, 2, 2, 1, 3, 1, 2, 1, 2, 2, 4, 5, 4, 1, 3, 2, 3, 2, 2, 3, 4, 1, 2, 1, 2, 2, 3, 1, 4, 1, 3, 1, 1, 4, 1, 2, 2, 2, 3, 2, 2, 1, 3, 2, 5, 6, 5, 1, 4, 2, 4, 2, 6, 3, 2, 1, 3, 1, 2, 3, 3, 2, 4, 2, 3, 1, 6, 4, 2, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Triangle begins:
  1
  2
  2
  3
  2 1
  1 2
  3
  4
  3 1
  4
  2 2
  1 3
  1 2 1
For example, composition 350 in standard order is (2,2,1,1,1,2), so row 350 is (4,3,2).
		

Crossrefs

Row-sums are A029837.
Standard compositions are listed by A066099.
Row-lengths are A124767.
These compositions are ranked by A353847.
Row k has A353849(k) distinct parts.
The version for partitions is A354584, ranked by A353832.
A005811 counts runs in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total/@Split[stc[n]],{n,0,30}]

A353852 Numbers k such that the k-th composition in standard order (row k of A066099) has all distinct run-sums.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 79, 80, 81, 84, 85, 86, 87, 88
Offset: 0

Views

Author

Gus Wiseman, May 31 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:        0  ()
   1:        1  (1)
   2:       10  (2)
   3:       11  (1,1)
   4:      100  (3)
   5:      101  (2,1)
   6:      110  (1,2)
   7:      111  (1,1,1)
   8:     1000  (4)
   9:     1001  (3,1)
  10:     1010  (2,2)
  12:     1100  (1,3)
  15:     1111  (1,1,1,1)
  16:    10000  (5)
  17:    10001  (4,1)
  18:    10010  (3,2)
  19:    10011  (3,1,1)
  20:    10100  (2,3)
  21:    10101  (2,2,1)
  23:    10111  (2,1,1,1)
		

Crossrefs

The version for runs in binary expansion is A175413.
The version for parts instead of run-sums is A233564, counted A032020.
The version for run-lengths instead of run-sums is A351596, counted A329739.
The version for runs instead of run-sums is A351290, counted by A351013.
The version for partitions is A353838, counted A353837, complement A353839.
The equal instead of distinct version is A353848, counted by A353851.
These compositions are counted by A353850.
The weak version (rucksack compositions) is A354581, counted by A354580.
A003242 counts anti-run compositions, ranked by A333489.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A242882 counts composition with distinct multiplicities, partitions A098859.
A304442 counts partitions with all equal run-sums.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353853-A353859 pertain to composition run-sum trajectory.
A353864 counts rucksack partitions, perfect A353865.
A353929 counts distinct runs in binary expansion, firsts A353930.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Total/@Split[stc[#]]&]

A351202 Number of permutations of the multiset of prime factors of n (or ordered prime factorizations of n) with all distinct runs.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 1, 2, 1, 6, 1, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 6, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 2, 1, 2, 6, 1, 2, 2, 6, 1, 4, 1, 2, 2, 2, 2, 6, 1, 4, 1, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 13 2022

Keywords

Examples

			The a(36) = 2 permutations are (1,1,2,2), (2,2,1,1). Missing are: (1,2,1,2), (1,2,2,1), (2,1,1,2), (2,1,2,1). Here we use prime indices instead of factors.
		

Crossrefs

The maximum number of possible permutations is A008480.
Positions less than A008480 are A351201.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A283353 counts normal multisets with a permutation without distinct runs.
A297770 counts distinct runs in binary expansion.
A351014 counts distinct runs in standard compositions, firsts A351015.
A351204 = partitions whose perms. have distinct runs, complement A351203.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Join@@ ConstantArray@@@FactorInteger[n]],UnsameQ@@Split[#]&]],{n,100}]
Showing 1-10 of 41 results. Next