cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A102750 Numbers n such that square of largest prime dividing n does not divide n.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85
Offset: 1

Views

Author

Leroy Quet, Feb 09 2005

Keywords

Comments

Numbers n such that the exponent of the largest prime dividing n is one. - Harvey P. Dale, May 02 2019
From Peter Munn, Sep 30 2020: (Start)
2 together with numbers on the left half of the Doudna sequence tree depicted in Antti Karttunen's 2014 comment in A005940.
This sequence and A335738, considered as sets, are related by the self-inverse function A225546(.), which maps the members of either set 1:1 onto the other set.
(End)

Examples

			63 is included because 63 = 3^2 *7 and 7 (the largest prime dividing 63) only divides 63 once.
		

Crossrefs

Cf. A070003 (complement, apart from the term 1 that is in neither sequence).
Related to A335738 via A225546.
Cf. A005940.

Programs

  • Mathematica
    Select[Range[2,100],FactorInteger[#][[-1,2]]==1&] (* Harvey P. Dale, May 02 2019 *)
  • PARI
    isok(n) = my(f = factor(n)); n % f[#f~, 1]^2; \\ Michel Marcus, May 20 2014

Extensions

More terms from Erich Friedman, Aug 08 2005

A360013 Numbers whose exponent of 2 in their canonical prime factorization is larger than all the other exponents.

Original entry on oeis.org

2, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 104, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 184, 188, 192, 200, 204, 208, 212, 220, 224, 228, 232, 236, 240, 244, 248, 256
Offset: 1

Views

Author

Amiram Eldar, Jan 21 2023

Keywords

Comments

Numbers k such that A007814(k) > A051903(A000265(k)).
The powers of 2 (A000079), except for 1, are all terms.
The product of any two terms (not necessarily distinct) is also a term.
This sequence is a disjoint union of {2} and the subsequences of numbers m of the form 2^k*o where o = A000265(m), the odd part of m, is a k-free number, for k >= 2. These subsequences include, for k = 2, numbers of the form 4*o where o is an odd squarefree number (A056911); for k = 3, numbers of the form 8*o where o is an odd cubefree number; etc.
The asymptotic density of this sequence is Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 0.222707226888193809... .
The asymptotic mean of the exponent of 2 in the prime factorization of the terms of this sequence is Sum_{k>=2} k/(zeta(k)*2*(2^k-1)) / Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 3.10346728882748723133... . [corrected by Amiram Eldar, Jul 10 2025]
This sequence is a subsequence of A360015 and the asymptotic density of this sequence within A360015 is exactly 1/2.
Also even numbers whose multiset of prime factors has unique mode 2. - Gus Wiseman, Jul 10 2023

Examples

			From _Gus Wiseman_, Jul 09 2023: (Start)
108 = 2*2*3*3*3 is missing because its mode is not 2.
180 = 2*2*3*3*5 is missing because 2 is not the unique mode.
120 = 2*2*2*3*5 is present because its unique mode is 2.
The terms together with their prime factorizations begin:
   2 = 2
   4 = 2*2
   8 = 2*2*2
  12 = 2*2*3
  16 = 2*2*2*2
  20 = 2*2*5
  24 = 2*2*2*3
  28 = 2*2*7
  32 = 2*2*2*2*2
  40 = 2*2*2*5
  44 = 2*2*11
  48 = 2*2*2*2*3
  52 = 2*2*13
  56 = 2*2*2*7
  60 = 2*2*3*5
  64 = 2*2*2*2*2*2
(End)
		

Crossrefs

Equals A360015 \ A360014.
Partitions of this type are counted by A241131.
Allowing any unique mode gives A356862, complement A362605.
Allowing any unique co-mode gives A359178, complement A362606.
Not requiring the mode to be unique gives A360015.
The opposite version is A362616, counted by A362612.
For co-mode instead of mode we have A364061, counted by A364062.
With least prime factor instead of 2, we have A364160, counted by A364193.
With a different factorization, we have the subsequence A335738.
A124010 gives prime signature, ordered A118914.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.

Programs

  • Mathematica
    q[n_] := Module[{e = IntegerExponent[n, 2], m}, m = n/2^e; (m == 1 && e > 0) || AllTrue[FactorInteger[m][[;; , 2]], # < e &]]; Select[Range[256], q]
  • PARI
    is(n) = {my(e = valuation(n, 2), m = n >> e); (m == 1 && e > 0) || (m > 1 && vecmax(factor(m)[,2]) < e)};

Formula

a(n) = 2*A360015(n). - Gus Wiseman, Jul 10 2023

A352780 Square array A(n,k), n >= 1, k >= 0, read by descending antidiagonals, such that the row product is n and column k contains only (2^k)-th powers of squarefree numbers.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Apr 02 2022

Keywords

Comments

This is well-defined because positive integers have a unique factorization into powers of nonunit squarefree numbers with distinct exponents that are powers of 2.
Each (infinite) row is the lexicographically earliest with product n and terms that are a (2^k)-th power for all k.
For all k, column k is column k+1 of A060176 conjugated by A225546.

Examples

			The top left corner of the array:
  n/k |   0   1   2   3   4   5   6
------+------------------------------
    1 |   1,  1,  1,  1,  1,  1,  1,
    2 |   2,  1,  1,  1,  1,  1,  1,
    3 |   3,  1,  1,  1,  1,  1,  1,
    4 |   1,  4,  1,  1,  1,  1,  1,
    5 |   5,  1,  1,  1,  1,  1,  1,
    6 |   6,  1,  1,  1,  1,  1,  1,
    7 |   7,  1,  1,  1,  1,  1,  1,
    8 |   2,  4,  1,  1,  1,  1,  1,
    9 |   1,  9,  1,  1,  1,  1,  1,
   10 |  10,  1,  1,  1,  1,  1,  1,
   11 |  11,  1,  1,  1,  1,  1,  1,
   12 |   3,  4,  1,  1,  1,  1,  1,
   13 |  13,  1,  1,  1,  1,  1,  1,
   14 |  14,  1,  1,  1,  1,  1,  1,
   15 |  15,  1,  1,  1,  1,  1,  1,
   16 |   1,  1, 16,  1,  1,  1,  1,
   17 |  17,  1,  1,  1,  1,  1,  1,
   18 |   2,  9,  1,  1,  1,  1,  1,
   19 |  19,  1,  1,  1,  1,  1,  1,
   20 |   5,  4,  1,  1,  1,  1,  1,
		

Crossrefs

Sequences used in a formula defining this sequence: A000188, A007913, A060176, A225546.
Cf. A007913 (column 0), A335324 (column 1).
Range of values: {1} U A340682 (whole table), A005117 (column 0), A062503 (column 1), {1} U A113849 (column 2).
Row numbers of rows:
- with a 1 in column 0: A000290\{0};
- with a 1 in column 1: A252895;
- with a 1 in column 0, but not in column 1: A030140;
- where every 1 is followed by another 1: A337533;
- with 1's in all even columns: A366243;
- with 1's in all odd columns: A366242;
- where every term has an even number of distinct prime factors: A268390;
- where every term is a power of a prime: A268375;
- where the terms are pairwise coprime: A138302;
- where the last nonunit term is coprime to the earlier terms: A369938;
- where the last nonunit term is a power of 2: A335738.
Number of nonunit terms in row n is A331591(n); their positions are given (in reversed binary) by A267116(n); the first nonunit is in column A352080(n)-1 and the infinite run of 1's starts in column A299090(n).

Programs

  • PARI
    up_to = 105;
    A352780sq(n, k) = if(k==0, core(n), A352780sq(core(n, 1)[2], k-1)^2);
    A352780list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, forstep(col=a-1,0,-1, i++; if(i > up_to, return(v)); v[i] = A352780sq(a-col,col))); (v); };
    v352780 = A352780list(up_to);
    A352780(n) = v352780[n];

Formula

A(n,0) = A007913(n); for k > 0, A(n,k) = A(A000188(n), k-1)^2.
A(n,k) = A225546(A060176(A225546(n), k+1)).
A331591(A(n,k)) <= 1.

A335740 Factorize each integer m >= 2 as the product of powers of nonunit squarefree numbers with distinct exponents that are powers of 2. The sequence lists m such that the factor with the largest exponent is not a power of 2.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90
Offset: 1

Views

Author

Peter Munn, Jun 20 2020

Keywords

Comments

Every missing number greater than 2 is a multiple of 4. Every power of 2 is missing. Every positive power of every squarefree number greater than 2 is present.
The defined factorization is unique. Every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (A062503), at most one 4th power of a squarefree number (A113849), at most one 8th power of a squarefree number, and so on.
Iteratively map m using A000188, until 1 is reached, as A000188^k(m), for some k >= 1. m is in the sequence if and only if the preceding number, A000188^(k-1)(m), is greater than 2. k can be shown to be A299090(m).
The asymptotic density of this sequence is 1 - Sum_{k>=0} (d(2^(k+1)) - d(2^k))/2^(2^(k+1)-1) = 0.78636642806078947931..., where d(k) = 2^(k-1)/((2^k-1)*zeta(k)) is the asymptotic density of odd k-free numbers for k >= 2, and d(1) = 0. - Amiram Eldar, Feb 10 2024

Examples

			6 is a squarefree number, so its factorization for the definition (into powers of nonunit squarefree numbers with distinct exponents that are powers of 2) is the trivial "6^1". 6^1 is therefore the factor with the largest exponent, and is not a power of 2, so 6 is in the sequence.
48 factorizes for the definition as 3^1 * 2^4. The factor with the largest exponent is 2^4, which is a power of 2, so 48 is not in the sequence.
10^100 (a googol) factorizes in this way as 10^4 * 10^32 * 10^64. The factor with the largest exponent, 10^64, is a power of 10, not a power of 2, so 10^100 is in the sequence.
		

Crossrefs

Complement within A020725 of A335738.
A000188, A299090 are used in a formula defining this sequence.
Powers of squarefree numbers: A005117(1), A144338(1), A062503(2), A113849(4).
Subsequences: A042968\{1,2}, A182853, A268390.
With {1}, numbers in the odd bisection of A336322.

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2, 100], FixedPointList[s, #] [[-3]] > 2 &] (* Amiram Eldar, Nov 27 2020 *)
  • PARI
    is(n) = {my(e = valuation(n, 2), o = n >> e); if(e == 0, n > 1, if(o == 1, e < 1, floor(logint(e, 2)) <= floor(logint(vecmax(factor(o)[,2]), 2))));} \\ Amiram Eldar, Feb 10 2024

Formula

{a(n)} = {m : m >= 2 and A000188^(k-1)(m) > 2, where k = A299090(m)}.

A336322 a(n) = A225546(A122111(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 16, 9, 12, 10, 32, 15, 24, 18, 256, 30, 64, 7, 48, 27, 20, 14, 512, 36, 40, 81, 96, 21, 128, 42, 65536, 54, 60, 72, 1024, 35, 120, 45, 768, 70, 192, 105, 80, 162, 28, 210, 131072, 25, 144, 90, 160, 11, 4096, 108, 1536, 135, 56, 22, 2048, 33, 84, 243, 4294967296, 216, 384, 66, 240, 270, 288, 55, 262144, 110, 168, 324, 480, 50
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jul 17 2020

Keywords

Comments

A225546 and A122111 are both self-inverse permutations of the positive integers based on prime factorizations, and they share further common properties. For instance, they map the prime numbers to powers of 2: A225546 maps the k-th prime to 2^2^(k-1), whereas A122111 maps it to 2^k.
In composing these permutations, this sequence maps the list of prime numbers to the squarefree numbers, as listed in A019565; and the "normal" numbers (A055932), as listed in A057335, to ascending powers of 2.

Crossrefs

A225546 composed with A122111.
Sorted even bisection: A335738.
Sorted odd bisection (excluding 1): A335740.
Sequences used to express relationship between terms of this sequence: A001222, A003961, A253560, A331590, A350066.
Sequences of sequences (S_1, S_2, ... S_j) with the property a(S_i) = S_{i+1}, or essentially so: (A033844, A000040, A019565), (A057335, A000079, A001146), (A000244, A011764), (A001248, A334110), (A253563, A334866).
The inverse permutation, A336321, lists sequences where the property is weaker (between the sets of terms).

Formula

a(A033844(m)) = A000040(m+1). [Offset corrected Peter Munn, Feb 14 2022]
a(A000040(m)) = A019565(m).
a(A057335(m)) = 2^m.
For m >= 1, a(2^m) = A001146(m-1).
a(A253563(m)) = A334866(m).
From Peter Munn, Feb 14 2022: (Start)
a(A253560(n)) = a(n)^2.
For n >= 2, a(A003961(n)) = A331590(a(n), 2^2^(A001222(n)-1)).
a(A350066(n, k)) = A331590(a(n), a(k)).
(End)

A335427 a(1) = 0; for k >= 2, a(prime(k)) = 0, a(k^2) = 2 * a(k); otherwise a(n) = a(A334870(n)) + 1.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 2, 4, 0, 1, 0, 6, 2, 1, 0, 5, 0, 1, 2, 10, 0, 3, 0, 5, 2, 1, 4, 2, 0, 1, 2, 7, 0, 3, 0, 18, 4, 1, 0, 6, 0, 1, 2, 34, 0, 3, 4, 11, 2, 1, 0, 8, 0, 1, 8, 6, 4, 3, 0, 66, 2, 5, 0, 3, 0, 1, 2, 130, 8, 3, 0, 8, 0, 1, 0, 12, 4, 1, 2, 19, 0, 5, 8, 258, 2, 1, 4, 7, 0, 1, 16, 2, 0, 3, 0, 35, 6
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jun 15 2020

Keywords

Crossrefs

A052126, A225546, A334870, A335426 are used in formulas defining this sequence.
Related fully additive sequence: A048675.
Cf. A062090 (indices of zeros), A003159 (indices of even values), A036554 (indices of odd values).
A003961, A019565 are used to express relationship between terms of this sequence.

Programs

  • PARI
    A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));
    A335427(n) = if(n<=2,n-1, if(isprime(n), 0, if(issquare(n), 2*A335427(sqrtint(n)), 1+A335427(A334870(n)))));
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A052126(n) = if(1==n,n,(n/vecmax(factor(n)[, 1])));
    A335427(n) = if(n<=2,n-1, if(issquarefree(n), A048675(A052126(n)), my(k=core(n)); A048675(k) + 2*A335427(sqrtint(n/k))));

Formula

Alternative definition: (Start)
a(1) = 0, a(2) = 1; otherwise for n = k * m^2, k squarefree:
if m = 1, a(n) = A048675(A052126(k));
if m > 1, a(n) = A048675(k) + 2 * a(m).
(End)
For n = 4 * A122132(k), a(n) = A048675(n).
More generally, a(n) = A048675(n) if and only if n is in A335738.
a(n) = A335426(A225546(n)).
a(A003961(2k+1)) = 2 * a(2k+1).
If n is in A036554, a(n) = a(n/2) + 1; otherwise for n <> 3, a(n) = 2 * a(A019565(k/2) * m^2) - a(m^2), where n = A019565(k) * m^2.
Showing 1-6 of 6 results.