cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A243287 a(1)=1, and for n > 1, if n is k-th number divisible by the square of its largest prime factor (i.e., n = A070003(k)), a(n) = 1 + (2*a(k)); otherwise, when n = A102750(k), a(n) = 2*a(k).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 18, 24, 64, 7, 20, 17, 36, 48, 128, 14, 40, 34, 13, 72, 33, 96, 256, 28, 80, 11, 68, 26, 144, 19, 66, 192, 512, 56, 160, 22, 136, 52, 288, 38, 132, 384, 25, 65, 1024, 112, 320, 21, 44, 272, 104, 576, 76, 264, 768, 50, 130, 37, 2048
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2014

Keywords

Comments

This is an instance of "entanglement permutation", where two pairs of complementary subsets of natural numbers are interwoven with each other. In this case complementary pair A070003/A102750 (numbers which are divisible/not divisible by the square of their largest prime factor) is entangled with complementary pair odd/even numbers (A005408/A005843).
Thus this shares with the permutation A122111 the property that each term of A102750 is mapped to a unique even number and likewise each term of A070003 is mapped to a unique odd number.

Crossrefs

Inverse: A243288.
Similarly constructed permutations: A243343-A243346, A135141-A227413, A237126-A237427, A193231.

Formula

a(1) = 1, and thereafter, if A241917(n) = 0 (i.e., n is a term of A070003), a(n) = 1 + (2*a(A243282(n))); otherwise a(n) = 2*a(A243285(n)) (where A243282 and A243285 give the number of integers <= n divisible/not divisible by the square of their largest prime factor).

A243288 Permutation of natural numbers: a(1)=1, a(2n) = A102750(a(n)), a(2n+1) = A070003(a(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 25, 22, 81, 7, 18, 13, 36, 17, 54, 42, 242, 14, 49, 34, 150, 30, 128, 99, 882, 11, 27, 24, 100, 19, 64, 46, 256, 23, 98, 68, 490, 55, 338, 279, 4624, 20, 72, 62, 432, 44, 245, 178, 2209, 40, 216, 154, 1800, 119, 1200, 966
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2014

Keywords

Comments

This is an instance of "entanglement permutation", where two pairs of complementary subsets of natural numbers are interwoven with each other. In this case complementary pair odd/even numbers (A005408/A005843) is entangled with complementary pair A070003/A102750 (numbers which are divisible/not divisible by the square of their largest prime factor).
Thus this shares with the permutation A122111 the property that each even number is mapped to a unique term of A102750 and each odd number (larger than 1) to a unique term of A070003.

Crossrefs

Inverse of A243287.
Similarly constructed permutations: A243343-A243346, A135141-A227413, A237126-A237427, A193231.

Formula

a(1)=1, and for n > 1, if n=2k, a(n) = A102750(a(k)), otherwise, when n = 2k+1, a(n) = A070003(a(k)).

A244981 Permutation of natural numbers: a(n) = A122111(A102750(n)) / 2.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 32, 12, 9, 64, 128, 10, 18, 24, 256, 7, 48, 20, 512, 15, 1024, 36, 96, 27, 2048, 192, 72, 14, 4096, 30, 8192, 40, 25, 384, 16384, 11, 144, 80, 32768, 54, 28, 288, 768, 65536, 21, 131072, 1536, 50, 108, 60, 262144, 160, 576, 45, 524288, 1048576, 3072, 320, 81, 120, 2097152, 22, 6144, 4194304, 42
Offset: 1

Views

Author

Antti Karttunen, Jul 20 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A122111(A102750(n)) / 2.

A243286 Self-inverse permutation of natural numbers induced by the restriction of A243057 (or A243059 or A242420) to the union of {1} and A102750.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 12, 8, 9, 10, 27, 7, 13, 14, 36, 16, 62, 18, 19, 121, 148, 22, 23, 24, 43, 191, 11, 28, 283, 75, 113, 32, 87, 34, 481, 15, 388, 38, 39, 160, 1456, 42, 25, 795, 213, 602, 47, 74, 49, 818, 51, 52, 339, 54, 2699, 345, 57, 58, 59, 1053, 5219, 17, 914, 64
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2014

Keywords

Examples

			With n=7, the seventh number in the complement of A070003 (i.e. in the union of {1} and A102750) is A102750(6) = 10. When A243057 (or A243059) is applied to it, the result is another number that is a member of A102750, in this case 15, which occurs there as A102750(11). Thus a(7) = 11+1 = 12.
		

Crossrefs

Programs

Formula

a(1) = 1, and for n>1, a(n) = 1 + A243285(A243057(A102750(n-1))). [Note: instead of A243057 one can also use A243059 or A242420.]

A005940 The Doudna sequence: write n-1 in binary; power of prime(k) in a(n) is # of 1's that are followed by k-1 0's.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 27, 16, 11, 14, 21, 20, 35, 30, 45, 24, 49, 50, 75, 36, 125, 54, 81, 32, 13, 22, 33, 28, 55, 42, 63, 40, 77, 70, 105, 60, 175, 90, 135, 48, 121, 98, 147, 100, 245, 150, 225, 72, 343, 250, 375, 108, 625, 162, 243, 64, 17, 26, 39
Offset: 1

Views

Author

Keywords

Comments

A permutation of the natural numbers. - Robert G. Wilson v, Feb 22 2005
Fixed points: A029747. - Reinhard Zumkeller, Aug 23 2006
The even bisection, when halved, gives the sequence back. - Antti Karttunen, Jun 28 2014
From Antti Karttunen, Dec 21 2014: (Start)
This irregular table can be represented as a binary tree. Each child to the left is obtained by applying A003961 to the parent, and each child to the right is obtained by doubling the parent:
1
|
...................2...................
3 4
5......../ \........6 9......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 10 15 12 25 18 27 16
11 14 21 20 35 30 45 24 49 50 75 36 125 54 81 32
etc.
Sequence A163511 is obtained by scanning the same tree level by level, from right to left. Also in binary trees A253563 and A253565 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) gives the distance of n from 1 in all these trees.
A252737(n) gives the sum and A252738(n) the product of terms on row n (where 1 is on row 0, 2 on row 1, 3 and 4 on row 2, etc.). A252745(n) gives the number of nodes on level n whose left child is larger than the right child, A252750 the difference between left and right child for each node from node 2 onward.
(End)
-A008836(a(1+n)) gives the corresponding numerator for A323505(n). - Antti Karttunen, Jan 19 2019
(a(2n+1)-1)/2 [= A244154(n)-1, for n >= 0] is a permutation of the natural numbers. - George Beck and Antti Karttunen, Dec 08 2019
From Peter Munn, Oct 04 2020: (Start)
Each term has the same even part (equivalently, the same 2-adic valuation) as its index.
Using the tree depicted in Antti Karttunen's 2014 comment:
Numbers are on the right branch (4 and descendants) if and only if divisible by the square of their largest prime factor (cf. A070003).
Numbers on the left branch, together with 2, are listed in A102750.
(End)
According to Kutz (1981), he learned of this sequence from American mathematician Byron Leon McAllister (1929-2017) who attributed the invention of the sequence to a graduate student by the name of Doudna (first name Paul?) in the mid-1950's at the University of Wisconsin. - Amiram Eldar, Jun 17 2021
From David James Sycamore, Sep 23 2022: (Start)
Alternative (recursive) definition: If n is a power of 2 then a(n)=n. Otherwise, if 2^j is the greatest power of 2 not exceeding n, and if k = n - 2^j, then a(n) is the least m*a(k) that has not occurred previously, where m is an odd prime.
Example: Use recursion with n = 77 = 2^6 + 13. a(13) = 25 and since 11 is the smallest odd prime m such that m*a(13) has not already occurred (see a(27), a(29),a(45)), then a(77) = 11*25 = 275. (End)
The odd bisection, when transformed by replacing all prime(k)^e in a(2*n - 1) with prime(k-1)^e, returns a(n), and thus gives the sequence back. - David James Sycamore, Sep 28 2022

Examples

			From _N. J. A. Sloane_, Aug 22 2022: (Start)
Let c_i = number of 1's in binary expansion of n-1 that have i 0's to their right, and let p(j) = j-th prime.  Then a(n) = Product_i p(i+1)^c_i.
If n=9, n-1 is 1000, c_3 = 1, a(9) = p(4)^1 = 7.
If n=10, n-1 = 1001, c_0 = 1, c_2 = 1, a(10) = p(1)*p(3) = 2*5 = 10.
If n=11, n-1 = 1010, c_1 = 1, c_2 = 1, a(11) = p(2)*p(3) = 15. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A103969. Inverse is A005941 (A156552).
Cf. A125106. [From Franklin T. Adams-Watters, Mar 06 2010]
Cf. A252737 (gives row sums), A252738 (row products), A332979 (largest on row).
Related permutations of positive integers: A163511 (via A054429), A243353 (via A006068), A244154, A253563 (via A122111), A253565, A332977, A334866 (via A225546).
A000120, A003602, A003961, A006519, A053645, A070939, A246278, A250246, A252753, A253552 are used in a formula defining this sequence.
Formulas for f(a(n)) are given for f = A000265, A003963, A007949, A055396, A056239.
Numbers that occur at notable sets of positions in the binary tree representation of the sequence: A000040, A000079, A002110, A070003, A070826, A102750.
Cf. A106737, A290077, A323915, A324052, A324054, A324055, A324056, A324057, A324058, A324114, A324335, A324340, A324348, A324349 for various number-theoretical sequences applied to (i.e., permuted by) this sequence.
k-adic valuation: A007814 (k=2), A337821 (k=3).
Positions of multiples of 3: A091067.
Primorial deflation: A337376 / A337377.
Sum of prime indices of a(n) is A161511, reverse version A359043.
A048793 lists binary indices, ranked by A019565.
A066099 lists standard comps, partial sums A358134 (ranked by A358170).

Programs

  • Haskell
    a005940 n = f (n - 1) 1 1 where
       f 0 y _          = y
       f x y i | m == 0 = f x' y (i + 1)
               | m == 1 = f x' (y * a000040 i) i
               where (x',m) = divMod x 2
    -- Reinhard Zumkeller, Oct 03 2012
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library)
    (define (A005940 n) (A005940off0 (- n 1))) ;; The off=1 version, utilizing any one of three different offset-0 implementations:
    (definec (A005940off0 n) (cond ((< n 2) (+ 1 n)) (else (* (A000040 (- (A070939 n) (- (A000120 n) 1))) (A005940off0 (A053645 n))))))
    (definec (A005940off0 n) (cond ((<= n 2) (+ 1 n)) ((even? n) (A003961 (A005940off0 (/ n 2)))) (else (* 2 (A005940off0 (/ (- n 1) 2))))))
    (define (A005940off0 n) (let loop ((n n) (i 1) (x 1)) (cond ((zero? n) x) ((even? n) (loop (/ n 2) (+ i 1) x)) (else (loop (/ (- n 1) 2) i (* x (A000040 i)))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Maple
    f := proc(n,i,x) option remember ; if n = 0 then x; elif type(n,'even') then procname(n/2,i+1,x) ; else procname((n-1)/2,i,x*ithprime(i)) ; end if; end proc:
    A005940 := proc(n) f(n-1,1,1) ; end proc: # R. J. Mathar, Mar 06 2010
  • Mathematica
    f[n_] := Block[{p = Partition[ Split[ Join[ IntegerDigits[n - 1, 2], {2}]], 2]}, Times @@ Flatten[ Table[q = Take[p, -i]; Prime[ Count[ Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}] ]]; Table[ f[n], {n, 67}] (* Robert G. Wilson v, Feb 22 2005 *)
    Table[Times@@Prime/@(Join@@Position[Reverse[IntegerDigits[n,2]],1]-Range[DigitCount[n,2,1]]+1),{n,0,100}] (* Gus Wiseman, Dec 28 2022 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, n%2 && (t*=p) || p=nextprime(p+1)); t } \\ M. F. Hasler, Mar 07 2010; update Aug 29 2014
    
  • PARI
    a(n)=my(p=2, t=1); for(i=0,exponent(n), if(bittest(n,i), t*=p, p=nextprime(p+1))); t \\ Charles R Greathouse IV, Nov 11 2021
    
  • Python
    from sympy import prime
    import math
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    print([b(n - 1) for n in range(1, 101)]) # Indranil Ghosh, Apr 10 2017
    
  • Python
    from math import prod
    from itertools import accumulate
    from collections import Counter
    from sympy import prime
    def A005940(n): return prod(prime(len(a)+1)**b for a, b in Counter(accumulate(bin(n-1)[2:].split('1')[:0:-1])).items()) # Chai Wah Wu, Mar 10 2023

Formula

From Reinhard Zumkeller, Aug 23 2006, R. J. Mathar, Mar 06 2010: (Start)
a(n) = f(n-1, 1, 1)
where f(n, i, x) = x if n = 0,
= f(n/2, i+1, x) if n > 0 is even
= f((n-1)/2, i, x*prime(i)) otherwise. (End)
From Antti Karttunen, Jun 26 2014: (Start)
Define a starting-offset 0 version of this sequence as:
b(0)=1, b(1)=2, [base cases]
and then compute the rest either with recurrence:
b(n) = A000040(1+(A070939(n)-A000120(n))) * b(A053645(n)).
or
b(2n) = A003961(b(n)), b(2n+1) = 2 * b(n). [Compare this to the similar recurrence given for A163511.]
Then define a(n) = b(n-1), where a(n) gives this sequence A005940 with the starting offset 1.
Can be also defined as a composition of related permutations:
a(n+1) = A243353(A006068(n)).
a(n+1) = A163511(A054429(n)). [Compare the scatter plots of this sequence and A163511 to each other.]
This permutation also maps between the partitions as enumerated in the lists A125106 and A112798, providing identities between:
A161511(n) = A056239(a(n+1)). [The corresponding sums ...]
A243499(n) = A003963(a(n+1)). [... and the products of parts of those partitions.]
(End)
From Antti Karttunen, Dec 21 2014 - Jan 04 2015: (Start)
A002110(n) = a(1+A002450(n)). [Primorials occur at (4^n - 1)/3 in the offset-0 version of the sequence.]
a(n) = A250246(A252753(n-1)).
a(n) = A122111(A253563(n-1)).
For n >= 1, A055396(a(n+1)) = A001511(n).
For n >= 2, a(n) = A246278(1+A253552(n)).
(End)
From Peter Munn, Oct 04 2020: (Start)
A000265(a(n)) = a(A000265(n)) = A003961(a(A003602(n))).
A006519(a(n)) = a(A006519(n)) = A006519(n).
a(n) = A003961(a(A003602(n))) * A006519(n).
A007814(a(n)) = A007814(n).
A007949(a(n)) = A337821(n) = A007814(A003602(n)).
a(n) = A225546(A334866(n-1)).
(End)
a(2n) = 2*a(n), or generally a(2^k*n) = 2^k*a(n). - Amiram Eldar, Oct 03 2022
If n-1 = Sum_{i} 2^(q_i-1), then a(n) = Product_{i} prime(q_i-i+1). These are the Heinz numbers of the rows of A125106. If the offset is changed to 0, the inverse is A156552. - Gus Wiseman, Dec 28 2022

Extensions

More terms from Robert G. Wilson v, Feb 22 2005
Sign in a formula switched and Maple program added by R. J. Mathar, Mar 06 2010
Binary tree illustration and keyword tabf added by Antti Karttunen, Dec 21 2014

A122111 Self-inverse permutation of the positive integers induced by partition enumeration in A112798 and partition conjugation.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 64, 24, 18, 7, 128, 15, 256, 20, 36, 48, 512, 14, 27, 96, 25, 40, 1024, 30, 2048, 11, 72, 192, 54, 21, 4096, 384, 144, 28, 8192, 60, 16384, 80, 50, 768, 32768, 22, 81, 45, 288, 160, 65536, 35, 108, 56, 576, 1536, 131072, 42
Offset: 1

Views

Author

Keywords

Comments

Factor n; replace each prime(i) with i, take the conjugate partition, replace parts i with prime(i) and multiply out.
From Antti Karttunen, May 12-19 2014: (Start)
For all n >= 1, A001222(a(n)) = A061395(n), and vice versa, A061395(a(n)) = A001222(n).
Because the partition conjugation doesn't change the partition's total sum, this permutation preserves A056239, i.e., A056239(a(n)) = A056239(n) for all n.
(Similarly, for all n, A001221(a(n)) = A001221(n), because the number of steps in the Ferrers/Young-diagram stays invariant under the conjugation. - Note added Apr 29 2022).
Because this permutation commutes with A241909, in other words, as a(A241909(n)) = A241909(a(n)) for all n, from which follows, because both permutations are self-inverse, that a(n) = A241909(a(A241909(n))), it means that this is also induced when partitions are conjugated in the partition enumeration system A241918. (Not only in A112798.)
(End)
From Antti Karttunen, Jul 31 2014: (Start)
Rows in arrays A243060 and A243070 converge towards this sequence, and also, assuming no surprises at the rate of that convergence, this sequence occurs also as the central diagonal of both.
Each even number is mapped to a unique term of A102750 and vice versa.
Conversely, each odd number (larger than 1) is mapped to a unique term of A070003, and vice versa. The permutation pair A243287-A243288 has the same property. This is also used to induce the permutations A244981-A244984.
Taking the odd bisection and dividing out the largest prime factor results in the permutation A243505.
Shares with A245613 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.
Conversely, with A245614 (the inverse of above), shares the property that each term of A244990 is mapped to a unique term of A028260 and each term of A244991 is mapped to a unique term of A026424.
(End)
The Maple program follows the steps described in the first comment. The subprogram C yields the conjugate partition of a given partition. - Emeric Deutsch, May 09 2015
The Heinz number of the partition that is conjugate to the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r). Example: a(3) = 4. Indeed, the partition with Heinz number 3 is [2]; its conjugate is [1,1] having Heinz number 4. - Emeric Deutsch, May 19 2015

Crossrefs

Cf. A088902 (fixed points).
Cf. A112798, A241918 (conjugates the partitions listed in these two tables).
Cf. A243060 and A243070. (Limit of rows in these arrays, and also their central diagonal).
Cf. A319988 (parity of this sequence for n > 1), A336124 (a(n) mod 4).
{A000027, A122111, A241909, A241916} form a 4-group.
{A000027, A122111, A153212, A242419} form also a 4-group.
Cf. also array A350066 [A(i, j) = a(a(i)*a(j))].

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0; for i to nops(P) do if j <= P[i] then c := c+1 else  end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: seq(c(n), n = 1 .. 59); # Emeric Deutsch, May 09 2015
    # second Maple program:
    a:= n-> (l-> mul(ithprime(add(`if`(jAlois P. Heinz, Sep 30 2017
  • Mathematica
    A122111[1] = 1; A122111[n_] := Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@Length@l, m = Min@l}, Length@Union@l]] &@Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@n]; Array[A122111, 60] (* JungHwan Min, Aug 22 2016 *)
    a[n_] := Function[l, Product[Prime[Sum[If[jJean-François Alcover, Sep 23 2020, after Alois P. Heinz *)
  • PARI
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m)); \\ Antti Karttunen, Jul 20 2020
    
  • Python
    from sympy import factorint, prevprime, prime, primefactors
    from operator import mul
    def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a105560(n): return 1 if n==1 else prime(a001222(n))
    def a(n): return 1 if n==1 else a105560(n)*a(a064989(n))
    [a(n) for n in range(1, 101)] # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000040 (A001222 n)) (A122111 (A064989 n)))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000079 (A241917 n)) (A003961 (A122111 (A052126 n))))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (expt (A000040 (A071178 n)) (A241919 n)) (A242378bi (A071178 n) (A122111 (A051119 n))))))
    ;; Antti Karttunen, May 12 2014
    

Formula

From Antti Karttunen, May 12-19 2014: (Start)
a(1) = 1, a(p_i) = 2^i, and for other cases, if n = p_i1 * p_i2 * p_i3 * ... * p_{k-1} * p_k, where p's are primes, not necessarily distinct, sorted into nondescending order so that i1 <= i2 <= i3 <= ... <= i_{k-1} <= ik, then a(n) = 2^(ik-i_{k-1}) * 3^(i_{k-1}-i_{k-2}) * ... * p_{i_{k-1}}^(i2-i1) * p_ik^(i1).
This can be implemented as a recurrence, with base case a(1) = 1,
and then using any of the following three alternative formulas:
a(n) = A105560(n) * a(A064989(n)) = A000040(A001222(n)) * a(A064989(n)). [Cf. the formula for A242424.]
a(n) = A000079(A241917(n)) * A003961(a(A052126(n))).
a(n) = (A000040(A071178(n))^A241919(n)) * A242378(A071178(n), a(A051119(n))). [Here ^ stands for the ordinary exponentiation, and the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n.]
a(n) = 1 + A075157(A129594(A075158(n-1))). [Follows from the commutativity with A241909, please see the comments section.]
(End)
From Antti Karttunen, Jul 31 2014: (Start)
As a composition of related permutations:
a(n) = A153212(A242419(n)) = A242419(A153212(n)).
a(n) = A241909(A241916(n)) = A241916(A241909(n)).
a(n) = A243505(A048673(n)).
a(n) = A064216(A243506(n)).
Other identities. For all n >= 1, the following holds:
A006530(a(n)) = A105560(n). [The latter sequence gives greatest prime factor of the n-th term].
a(2n)/a(n) = A105560(2n)/A105560(n), which is equal to A003961(A105560(n))/A105560(n) when n > 1.
A243505(n) = A052126(a(2n-1)) = A052126(a(4n-2)).
A066829(n) = A244992(a(n)) and vice versa, A244992(n) = A066829(a(n)).
A243503(a(n)) = A243503(n). [Because partition conjugation does not change the partition size.]
A238690(a(n)) = A238690(n). - per Matthew Vandermast's note in that sequence.
A238745(n) = a(A181819(n)) and a(A238745(n)) = A181819(n). - per Matthew Vandermast's note in A238745.
A181815(n) = a(A181820(n)) and a(A181815(n)) = A181820(n). - per Matthew Vandermast's note in A181815.
(End)
a(n) = A181819(A108951(n)). [Prime shadow of the primorial inflation of n] - Antti Karttunen, Apr 29 2022

A004394 Superabundant [or super-abundant] numbers: n such that sigma(n)/n > sigma(m)/m for all m < n, sigma(n) being A000203(n), the sum of the divisors of n.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 554400, 665280, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 8648640, 10810800, 21621600
Offset: 1

Views

Author

Keywords

Comments

Matthew Conroy points out that these are different from the highly composite numbers - see A002182. Jul 10 1996
With respect to the comment above, neither sequence is subsequence of the other. - Ivan N. Ianakiev, Feb 11 2020
Also n such that sigma_{-1}(n) > sigma_{-1}(m) for all m < n, where sigma_{-1}(n) is the sum of the reciprocals of the divisors of n. - Matthew Vandermast, Jun 09 2004
Ramanujan (1997, Section 59; written in 1915) called these numbers "generalized highly composite." Alaoglu and Erdős (1944) changed the terminology to "superabundant." - Jonathan Sondow, Jul 11 2011
Alaoglu and Erdős show that: (1) n is superabundant => n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2 >= e_3 >= ... >= e_p (and e_p is 1 unless n=4 or n=36); (2) if q < r are primes, then | e_r - floor(e_q*log(q)/log(r)) | <= 1; (3) q^{e_q} < 2^{e_2+2} for primes q, 2 < q <= p. - Keith Briggs, Apr 26 2005
It follows from Alaoglu and Erdős finding 1 (above) that, for n > 7, a(n) is a Zumkeller Number (A083207); for details, see Proposition 9 and Corollary 5 at Rao/Peng link (below). - Ivan N. Ianakiev, Feb 11 2020
See A166735 for superabundant numbers that are not highly composite, and A189228 for superabundant numbers that are not colossally abundant.
Pillai called these numbers "highly abundant numbers of the 1st order". - Amiram Eldar, Jun 30 2019

References

  • R. Honsberger, Mathematical Gems, M.A.A., 1973, p. 112.
  • J. Sandor, "Abundant numbers", In: M. Hazewinkel, Encyclopedia of Mathematics, Supplement III, Kluwer Acad. Publ., 2002 (see pp. 19-21).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.

Crossrefs

Almost the same as A077006.
The colossally abundant numbers A004490 are a subsequence, as are A023199.
Subsequence of A025487; apart from a(3) = 4 and a(7) = 36, a subsequence of A102750.
Cf. A112974 (number of superabundant numbers between colossally abundant numbers).
Cf. A091901 (Robin's inequality), A189686 (superabundant and the reverse of Robin's inequality), A192884 (non-superabundant and the reverse of Robin's inequality).

Programs

Formula

a(n+1) <= 2*a(n). - A.H.M. Smeets, Jul 10 2021

Extensions

Name edited by Peter Munn, Mar 13 2019

A362608 Number of integer partitions of n having a unique mode.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 11, 16, 21, 29, 43, 54, 78, 102, 131, 175, 233, 295, 389, 490, 623, 794, 1009, 1255, 1579, 1967, 2443, 3016, 3737, 4569, 5627, 6861, 8371, 10171, 12350, 14901, 18025, 21682, 26068, 31225, 37415, 44617, 53258, 63313, 75235, 89173, 105645
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The partition (3,3,2,1) has greatest multiplicity 2, and a unique part of multiplicity 2 (namely 3), so is counted under a(9).
The a(1) = 1 through a(7) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (221)    (33)      (322)
                    (211)   (311)    (222)     (331)
                    (1111)  (2111)   (411)     (511)
                            (11111)  (3111)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

For parts instead of multiplicities we have A000041(n-1), ranks A102750.
For median instead of mode we have A238478, complement A238479.
These partitions have ranks A356862.
The complement is counted by A362607, ranks A362605.
For co-mode complement we have A362609, ranks A362606.
For co-mode we have A362610, ranks A359178.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]==1&]],{n,0,30}]
  • PARI
    seq(n) = my(A=O(x*x^n)); Vec(sum(m=1, n, sum(j=1, n\m, x^(j*m)*(1-x^j)/(1 - x^(j*m)), A)*prod(j=1, n\m, (1 - x^(j*m))/(1 - x^j) + A)/prod(j=n\m+1, n, 1 - x^j + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023

Formula

G.f.: Sum_{m>=1} (Sum_{j>=1} x^(j*m)*(1 - x^j)/(1 - x^(j*m))) * (Product_{j>=1} (1 - x^(j*m))/(1 - x^j)). - Andrew Howroyd, May 04 2023

A070003 Numbers divisible by the square of their largest prime factor.

Original entry on oeis.org

4, 8, 9, 16, 18, 25, 27, 32, 36, 49, 50, 54, 64, 72, 75, 81, 98, 100, 108, 121, 125, 128, 144, 147, 150, 162, 169, 196, 200, 216, 225, 242, 243, 245, 250, 256, 288, 289, 294, 300, 324, 338, 343, 361, 363, 375, 392, 400, 432, 441, 450, 484, 486, 490, 500, 507
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers n such that P(phi(n)) - phi(P(n)) = 1, where P(x) is the largest prime factor of x. P(phi(n)) - phi(P(n)) = A006530(A000010(n)) - A000010(A006530(n)).
Numbers n such that the value of the commutator of phi and P functions at n is -1.
Equivalently, n such that n and phi(n) have the same largest prime factor since Phi(p) = p-1 if p is prime. - Benoit Cloitre, Jun 08 2002
Since n is divisible by P(n)^2, n cannot divide P(n)! and so A057109 is a supersequence. Hence all A002034(a(n)) are composite. - Jonathan Sondow, Dec 28 2004
A225546 defines a self-inverse bijection between this sequence and A335740, considered as sets. - Peter Munn, Jul 19 2020

Crossrefs

Subsequence of A057109, A122145.
Complement within A020725 of A102750.
Related to A335740 via A225546.
A195212 is a subsequence.
Cf. A319988 (characteristic function). Positions of odd terms > 1 in A122111.

Programs

  • Maple
    isA070003 := proc(n)
        if modp(n,A006530(n)^2) = 0 then # code re-use
            true;
        else
            false;
        end if;
    end proc:
    A070003 := proc(n)
        option remember ;
        if n =1 then
            4;
        else
            for a from procname(n-1)+1 do
                if isA070003(a) then
                    return a
                end if;
            end do:
        end if;
    end proc:
    seq( A070003(n),n=1..80) ; # R. J. Mathar, Jun 27 2024
  • Mathematica
    p[n_] := FactorInteger[n][[-1, 1]]; ep[n_] := EulerPhi[n]; fQ[n_] := p[ep[n]] == 1 + ep[p[n]]; Select[ Range[ 510], fQ] (* Robert G. Wilson v, Mar 26 2012 *)
    Select[Range[500], FactorInteger[#][[-1,2]] > 1 &] (* T. D. Noe, Dec 06 2012 *)
  • PARI
    for(n=3,1000,if(component(component(factor(n),1),omega(n))==component(component(factor(eulerphi(n)),1),omega(eulerphi(n))),print1(n,",")))
    
  • PARI
    is(n)=my(f=factor(n)[,2]);f[#f]>1 \\ Charles R Greathouse IV, Mar 21 2012
    
  • PARI
    sm(lim,mx)=if(mx==2,return(vector(log(lim+.5)\log(2)+1,i,1<<(i-1))));my(v=[1]);forprime(p=2,min(mx,lim),v=concat(v,p*sm(lim\p,p)));vecsort(v)
    list(lim)=my(v=[]);forprime(p=2,sqrt(lim),v=concat(v,p^2*sm(lim\p^2,p)));vecsort(v) \\ Charles R Greathouse IV, Mar 27 2012
    
  • Python
    from sympy import factorint
    def ok(n): f = factorint(n); return f[max(f)] >= 2
    print(list(filter(ok, range(4, 508)))) # Michael S. Branicky, Apr 08 2021

Formula

Erdős proved that there are x * exp(-(1 + o(1))sqrt(log x log log x)) members of this sequence up to x. - Charles R Greathouse IV, Mar 26 2012

Extensions

New name from Jonathan Sondow and Charles R Greathouse IV, Mar 27 2012

A356862 Numbers with a unique largest prime exponent.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 101, 103, 104
Offset: 1

Views

Author

Jens Ahlström, Sep 01 2022

Keywords

Comments

If the prime factorization of k has a unique largest exponent, then k is a term.
Numbers whose multiset of prime factors (with multiplicity) has a unique mode. - Gus Wiseman, May 12 2023
Disjoint union of A246655 and A376250. The asymptotic density of this sequence, 0.3660366524547281232052..., is equal to the density of A376250 since the prime powers have a zero density. - Amiram Eldar, Sep 17 2024

Examples

			Prime powers (A246655) are in the sequence, since they have only one prime exponent in their prime factorization, hence a unique largest exponent.
144 is in the sequence, since 144 = 2^4 * 3^2 and there is the unique largest exponent 4.
225 is not in the sequence, since 225 = 3^2 * 5^2 and the largest exponent 2 is not unique, but rather it is the exponent of both the prime factor 3 and of the prime factor 5.
		

Crossrefs

Subsequence of A319161 (which has additional terms 1, 180, 252, 300, 396, 450, 468, ...).
For factors instead of exponents we have A102750.
For smallest instead of largest we have A359178, counted by A362610.
The complement is A362605, counted by A362607.
The complement for co-mode is A362606, counted by A362609.
Partitions of this type are counted by A362608.
These are the positions of 1's in A362611, for co-modes A362613.
A001221 is the number of prime exponents, sum A001222.
A027746 lists prime factors, A112798 indices, A124010 exponents.
A362614 counts partitions by number of modes, A362615 co-modes.

Programs

  • Mathematica
    Select[Range[2, 100], Count[(e = FactorInteger[#][[;; , 2]]), Max[e]] == 1 &] (* Amiram Eldar, Sep 01 2022 *)
  • PARI
    isok(k) = if (k>1, my(f=factor(k), m=vecmax(f[,2]), w=select(x->(f[x,2] == m), [1..#f~])); #w == 1); \\ Michel Marcus, Sep 01 2022
  • Python
    from sympy import factorint
    from collections import Counter
    def ok(k):
        c = Counter(factorint(k)).most_common(2)
        return not (len(c) > 1 and c[0][1] == c[1][1])
    print([k for k in range(2, 105) if ok(k)])
    
  • Python
    from sympy import factorint
    from itertools import count, islice
    def A356862_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:len(f:=sorted(factorint(n).values(),reverse=True))==1 or f[0]!=f[1],count(max(startvalue,2)))
    A356862_list = list(islice(A356862_gen(),30)) # Chai Wah Wu, Sep 10 2022
    
Showing 1-10 of 30 results. Next