cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A122111 Self-inverse permutation of the positive integers induced by partition enumeration in A112798 and partition conjugation.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 64, 24, 18, 7, 128, 15, 256, 20, 36, 48, 512, 14, 27, 96, 25, 40, 1024, 30, 2048, 11, 72, 192, 54, 21, 4096, 384, 144, 28, 8192, 60, 16384, 80, 50, 768, 32768, 22, 81, 45, 288, 160, 65536, 35, 108, 56, 576, 1536, 131072, 42
Offset: 1

Views

Author

Keywords

Comments

Factor n; replace each prime(i) with i, take the conjugate partition, replace parts i with prime(i) and multiply out.
From Antti Karttunen, May 12-19 2014: (Start)
For all n >= 1, A001222(a(n)) = A061395(n), and vice versa, A061395(a(n)) = A001222(n).
Because the partition conjugation doesn't change the partition's total sum, this permutation preserves A056239, i.e., A056239(a(n)) = A056239(n) for all n.
(Similarly, for all n, A001221(a(n)) = A001221(n), because the number of steps in the Ferrers/Young-diagram stays invariant under the conjugation. - Note added Apr 29 2022).
Because this permutation commutes with A241909, in other words, as a(A241909(n)) = A241909(a(n)) for all n, from which follows, because both permutations are self-inverse, that a(n) = A241909(a(A241909(n))), it means that this is also induced when partitions are conjugated in the partition enumeration system A241918. (Not only in A112798.)
(End)
From Antti Karttunen, Jul 31 2014: (Start)
Rows in arrays A243060 and A243070 converge towards this sequence, and also, assuming no surprises at the rate of that convergence, this sequence occurs also as the central diagonal of both.
Each even number is mapped to a unique term of A102750 and vice versa.
Conversely, each odd number (larger than 1) is mapped to a unique term of A070003, and vice versa. The permutation pair A243287-A243288 has the same property. This is also used to induce the permutations A244981-A244984.
Taking the odd bisection and dividing out the largest prime factor results in the permutation A243505.
Shares with A245613 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.
Conversely, with A245614 (the inverse of above), shares the property that each term of A244990 is mapped to a unique term of A028260 and each term of A244991 is mapped to a unique term of A026424.
(End)
The Maple program follows the steps described in the first comment. The subprogram C yields the conjugate partition of a given partition. - Emeric Deutsch, May 09 2015
The Heinz number of the partition that is conjugate to the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r). Example: a(3) = 4. Indeed, the partition with Heinz number 3 is [2]; its conjugate is [1,1] having Heinz number 4. - Emeric Deutsch, May 19 2015

Crossrefs

Cf. A088902 (fixed points).
Cf. A112798, A241918 (conjugates the partitions listed in these two tables).
Cf. A243060 and A243070. (Limit of rows in these arrays, and also their central diagonal).
Cf. A319988 (parity of this sequence for n > 1), A336124 (a(n) mod 4).
{A000027, A122111, A241909, A241916} form a 4-group.
{A000027, A122111, A153212, A242419} form also a 4-group.
Cf. also array A350066 [A(i, j) = a(a(i)*a(j))].

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0; for i to nops(P) do if j <= P[i] then c := c+1 else  end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: seq(c(n), n = 1 .. 59); # Emeric Deutsch, May 09 2015
    # second Maple program:
    a:= n-> (l-> mul(ithprime(add(`if`(jAlois P. Heinz, Sep 30 2017
  • Mathematica
    A122111[1] = 1; A122111[n_] := Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@Length@l, m = Min@l}, Length@Union@l]] &@Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@n]; Array[A122111, 60] (* JungHwan Min, Aug 22 2016 *)
    a[n_] := Function[l, Product[Prime[Sum[If[jJean-François Alcover, Sep 23 2020, after Alois P. Heinz *)
  • PARI
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m)); \\ Antti Karttunen, Jul 20 2020
    
  • Python
    from sympy import factorint, prevprime, prime, primefactors
    from operator import mul
    def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a105560(n): return 1 if n==1 else prime(a001222(n))
    def a(n): return 1 if n==1 else a105560(n)*a(a064989(n))
    [a(n) for n in range(1, 101)] # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000040 (A001222 n)) (A122111 (A064989 n)))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000079 (A241917 n)) (A003961 (A122111 (A052126 n))))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (expt (A000040 (A071178 n)) (A241919 n)) (A242378bi (A071178 n) (A122111 (A051119 n))))))
    ;; Antti Karttunen, May 12 2014
    

Formula

From Antti Karttunen, May 12-19 2014: (Start)
a(1) = 1, a(p_i) = 2^i, and for other cases, if n = p_i1 * p_i2 * p_i3 * ... * p_{k-1} * p_k, where p's are primes, not necessarily distinct, sorted into nondescending order so that i1 <= i2 <= i3 <= ... <= i_{k-1} <= ik, then a(n) = 2^(ik-i_{k-1}) * 3^(i_{k-1}-i_{k-2}) * ... * p_{i_{k-1}}^(i2-i1) * p_ik^(i1).
This can be implemented as a recurrence, with base case a(1) = 1,
and then using any of the following three alternative formulas:
a(n) = A105560(n) * a(A064989(n)) = A000040(A001222(n)) * a(A064989(n)). [Cf. the formula for A242424.]
a(n) = A000079(A241917(n)) * A003961(a(A052126(n))).
a(n) = (A000040(A071178(n))^A241919(n)) * A242378(A071178(n), a(A051119(n))). [Here ^ stands for the ordinary exponentiation, and the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n.]
a(n) = 1 + A075157(A129594(A075158(n-1))). [Follows from the commutativity with A241909, please see the comments section.]
(End)
From Antti Karttunen, Jul 31 2014: (Start)
As a composition of related permutations:
a(n) = A153212(A242419(n)) = A242419(A153212(n)).
a(n) = A241909(A241916(n)) = A241916(A241909(n)).
a(n) = A243505(A048673(n)).
a(n) = A064216(A243506(n)).
Other identities. For all n >= 1, the following holds:
A006530(a(n)) = A105560(n). [The latter sequence gives greatest prime factor of the n-th term].
a(2n)/a(n) = A105560(2n)/A105560(n), which is equal to A003961(A105560(n))/A105560(n) when n > 1.
A243505(n) = A052126(a(2n-1)) = A052126(a(4n-2)).
A066829(n) = A244992(a(n)) and vice versa, A244992(n) = A066829(a(n)).
A243503(a(n)) = A243503(n). [Because partition conjugation does not change the partition size.]
A238690(a(n)) = A238690(n). - per Matthew Vandermast's note in that sequence.
A238745(n) = a(A181819(n)) and a(A238745(n)) = A181819(n). - per Matthew Vandermast's note in A238745.
A181815(n) = a(A181820(n)) and a(A181815(n)) = A181820(n). - per Matthew Vandermast's note in A181815.
(End)
a(n) = A181819(A108951(n)). [Prime shadow of the primorial inflation of n] - Antti Karttunen, Apr 29 2022

A237427 a(0)=0, a(1)=1; thereafter, if n is k-th ludic number [i.e., n = A003309(k)], a(n) = 1 + (2*a(k-1)); otherwise, when n is k-th nonludic number [i.e., n = A192607(k)], a(n) = 2*a(k).

Original entry on oeis.org

0, 1, 3, 7, 2, 15, 6, 5, 14, 4, 30, 31, 12, 13, 10, 28, 8, 11, 60, 62, 24, 26, 20, 29, 56, 9, 16, 22, 120, 61, 124, 48, 52, 40, 58, 112, 18, 63, 32, 44, 240, 25, 122, 27, 248, 96, 104, 21, 80, 116, 224, 36, 126, 57, 64, 88, 480, 50, 244, 54, 496, 17, 192, 208, 42
Offset: 0

Views

Author

Keywords

Comments

Shares with permutation A237058 the property that all odd numbers occur in positions given by ludic numbers (A003309: 1, 2, 3, 5, 7, 11, 13, 17, ...), while the even numbers > 0 occur in positions given by nonludic numbers (A192607: 4, 6, 8, 9, 10, 12, 14, 15, 16, ...). However, instead of placing terms into those positions in monotone order this sequence recursively permutes the order of both subsets with the emerging permutation itself, so this is a kind of "deep" variant of A237058.
Alternatively, this can be viewed as yet another "entanglement permutation", where two pairs of complementary subsets of natural numbers are entangled with each other. In this case a complementary pair ludic/nonludic numbers (A003309/A192607) is entangled with a complementary pair odd/even numbers (A005408/A005843).
Because 2 is the only even ludic number, it implies that, apart from a(2)=3, odd numbers occur in odd positions only (along with many even numbers that also occur in odd positions).

Examples

			For n=2, with 2 being the second ludic number (= A003309(2)), the value is computed as 1+(2*a(2-1)) = 1+2*a(1) = 1+2 = 3, thus a(2)=3.
For n=3, with 3 being the third ludic number (= A003309(3)), the value is computed as 1+(2*a(3-1)) = 1+2*a(2) = 1+2*3 = 7, thus a(3)=7.
For n=4, with 4 being the first nonludic number (= A192607(1)), the value is computed as 2*a(1) = 2 = a(4).
For n=5, with 5 being the fourth ludic number (= A003309(4)), the value is computed as 1+(2*a(4-1)) = 1+2*a(3) = 1+2*7 = 15 = a(5).
For n=9, with 9 being the fourth nonludic number (= A192607(4)), the value is computed as 2*a(4) = 2*2 = 4 = a(9).
		

Crossrefs

Inverse permutation of A237126.
Similar permutations: A135141/A227413, A243287/A243288, A243343-A243346.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a237427 = (+ 1) . fromJust . (`elemIndex` a237126_list)
    
  • Mathematica
    nmax = 100;
    T = Range[2, nmax+7];
    L = {1};
    While[Length[T] > 0, With[{k = First[T]},
         AppendTo[L, k]; T = Drop[T, {1, -1, k}]]];
    nonL = Complement[Range[Last[L]], L];
    a[n_] := a[n] = Module[{k}, Which[
         n < 2, n,
         IntegerQ[k = FirstPosition[L, n][[1]]], 1 + 2 a[k-1],
         IntegerQ[k = FirstPosition[nonL, n][[1]]], 2 a[k],
         True , Print[" error: n = ", n]]];
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Oct 10 2021, after Ray Chandler in A003309 *)
  • Scheme
    ;; With Antti Karttunen's IntSeq-library for memoizing definec-macro.
    (definec (A237427 n) (cond ((< n 2) n) ((= 1 (A192490 n)) (+ 1 (* 2 (A237427 (- (A192512 n) 1))))) (else (* 2 (A237427 (A236863 n))))))
    ;; Antti Karttunen, Feb 07 2014

Formula

a(0)=0, a(1)=1; thereafter, if A192490(n) = 1 [i.e., n is ludic], a(n) = 1+(2*a(A192512(n)-1)); otherwise a(n) = 2*a(A236863(n)) [where A192512 and A236863 give the number of ludic and nonludic numbers <= n, respectively].

A243287 a(1)=1, and for n > 1, if n is k-th number divisible by the square of its largest prime factor (i.e., n = A070003(k)), a(n) = 1 + (2*a(k)); otherwise, when n = A102750(k), a(n) = 2*a(k).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 18, 24, 64, 7, 20, 17, 36, 48, 128, 14, 40, 34, 13, 72, 33, 96, 256, 28, 80, 11, 68, 26, 144, 19, 66, 192, 512, 56, 160, 22, 136, 52, 288, 38, 132, 384, 25, 65, 1024, 112, 320, 21, 44, 272, 104, 576, 76, 264, 768, 50, 130, 37, 2048
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2014

Keywords

Comments

This is an instance of "entanglement permutation", where two pairs of complementary subsets of natural numbers are interwoven with each other. In this case complementary pair A070003/A102750 (numbers which are divisible/not divisible by the square of their largest prime factor) is entangled with complementary pair odd/even numbers (A005408/A005843).
Thus this shares with the permutation A122111 the property that each term of A102750 is mapped to a unique even number and likewise each term of A070003 is mapped to a unique odd number.

Crossrefs

Inverse: A243288.
Similarly constructed permutations: A243343-A243346, A135141-A227413, A237126-A237427, A193231.

Formula

a(1) = 1, and thereafter, if A241917(n) = 0 (i.e., n is a term of A070003), a(n) = 1 + (2*a(A243282(n))); otherwise a(n) = 2*a(A243285(n)) (where A243282 and A243285 give the number of integers <= n divisible/not divisible by the square of their largest prime factor).

A243343 a(1)=1; thereafter, if n is the k-th squarefree number (i.e., n = A005117(k)), a(n) = 1 + (2*a(k-1)); otherwise, when n is k-th nonsquarefree number (i.e., n = A013929(k)), a(n) = 2*a(k).

Original entry on oeis.org

1, 3, 7, 2, 15, 5, 31, 6, 14, 11, 63, 4, 13, 29, 23, 30, 127, 10, 9, 62, 27, 59, 47, 12, 28, 61, 22, 126, 255, 21, 19, 8, 125, 55, 119, 26, 95, 25, 57, 58, 123, 45, 253, 46, 60, 511, 43, 254, 20, 18, 39, 124, 17, 54, 251, 118, 111, 239, 53, 94, 191, 51, 24, 56
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

This is an instance of an "entanglement permutation", where two pairs of complementary subsets of natural numbers are interwoven with each other. In this case complementary pair A005117/A013929 (numbers which are squarefree/not squarefree) is entangled with complementary pair odd/even numbers (A005408/A005843).
Thus this shares with permutation A243352 the property that each term of A005117 is mapped bijectively to a unique odd number and likewise each term of A013929 is mapped (bijectively) to a unique even number. However, instead of placing terms into those positions in monotone order this sequence recursively permutes the order of both subsets with the emerging permutation itself.
Are there any other fixed points than 1, 13, 54, 120, 1389, 3183, ... ?

Crossrefs

Formula

a(1) = 1; thereafter, if A008966(n) = 0 (i.e., n is a term of A013929, not squarefree), a(n) = 2*a(A057627(n)); otherwise a(n) = 2*a(A013928(n+1)-1)+1 (where A057627 and A013928(n+1) give the number of integers <= n divisible/not divisible by a square greater than one).
For all n, A000035(a(n)) = A008966(n) = A008683(n)^2, or equally, a(n) = mu(n) modulo 2. The same property holds for A243352.

A245606 Permutation of natural numbers: a(1) = 1, a(2n) = 1 + A003961(a(n)), a(2n+1) = A003961(1+a(n)). [Where A003961(n) shifts the prime factorization of n one step left].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 10, 7, 8, 15, 16, 11, 26, 21, 22, 13, 12, 27, 28, 25, 36, 81, 82, 19, 14, 45, 52, 125, 56, 39, 40, 29, 18, 33, 46, 17, 126, 99, 100, 31, 50, 51, 226, 41, 626, 129, 130, 89, 24, 63, 34, 35, 176, 87, 154, 59, 344, 825, 298, 115, 86, 189, 190, 43, 32, 105, 76, 23, 66, 57, 88, 53, 20
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2014

Keywords

Comments

The even bisection halved gives A245608. The odd bisection incremented by one and halved gives A245708.

Crossrefs

Programs

Formula

a(1) = 1, a(2n) = A243501(a(n)), a(2n+1) = A003961(1+a(n)).
As a composition of related permutations:
a(n) = A064216(A245608(n)).

A243346 a(1) = 1, a(2n) = A005117(1+a(n)), a(2n+1) = A013929(a(n)), where A005117 are squarefree and A013929 are nonsquarefree numbers.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 12, 5, 9, 13, 24, 10, 18, 19, 32, 7, 16, 14, 25, 21, 36, 38, 63, 15, 27, 30, 49, 31, 50, 53, 84, 11, 20, 26, 45, 22, 40, 39, 64, 34, 54, 59, 96, 62, 99, 103, 162, 23, 44, 42, 72, 47, 80, 79, 126, 51, 81, 82, 128, 86, 136, 138, 220, 17, 28, 33, 52, 41, 68, 73, 120
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

This permutation entangles complementary pair A005843/A005408 (even/odd numbers) with complementary pair A005117/A013929 (numbers which are squarefree/are not squarefree).

Crossrefs

Formula

a(1) = 1, a(2n) = A005117(1+a(n)), a(2n+1) = A013929(a(n)).
For all n > 1, A008966(a(n)) = A000035(n+1), or equally, mu(a(n)) + 1 = n modulo 2, where mu is Moebius mu (A008683). [A property shared with a simpler variant A075378].

A243347 a(1)=1, and for n>1, if mu(n) = 0, a(n) = A005117(1+a(A057627(n))), otherwise, a(n) = A013929(a(A013928(n))).

Original entry on oeis.org

1, 4, 12, 2, 32, 8, 84, 6, 19, 24, 220, 3, 18, 50, 63, 53, 564, 13, 9, 138, 49, 128, 162, 10, 31, 136, 38, 365, 1448, 36, 25, 5, 351, 126, 332, 30, 414, 27, 81, 82, 348, 99, 931, 103, 86, 3699, 96, 929, 21, 14, 64, 223, 16, 79, 892, 210, 325, 847, 80, 265, 1056, 72, 15, 51, 208, 212, 884, 221, 256
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

Self-inverse permutation of natural numbers.
Shares with A088609 the property that after 1, positions indexed by squarefree numbers larger than one, A005117(n+1): 2, 3, 5, 6, 7, 10, 11, 13, 14, ... contain only nonsquarefree numbers A013929: 4, 8, 9, 12, 16, 18, 20, 24, ..., and vice versa. However, instead of placing terms in those subsets in monotone order this sequence recursively permutes the order of both subsets with the emerging permutation itself, thus implementing a kind of "deep" variant of A088609. Alternatively, this can be viewed as yet another "entanglement permutation", where two pairs of complementary subsets of natural numbers are interwoven with each other. In this case complementary pair A005117/A013929 is entangled with complementary pair A013929/A005117.

Crossrefs

Formula

a(1), and for n>1, if mu(n) = 0, a(n) = A005117(1+a(A057627(n))), otherwise, a(n) = A013929(a(A013928(n))). [Here mu is Moebius mu-function, A008683, which is zero only when n is a nonsquarefree number, one of the numbers in A013929.]
For all n > 1, A008966(a(n)) = 1 - A008966(n), or equally, mu(a(n)) + 1 = mu(n) modulo 2, where mu is Moebius mu (A008683). [Note: Permutation A088609 satisfies the same condition.]

A243344 a(1) = 1, a(2n) = A013929(a(n)), a(2n+1) = A005117(1+a(n)).

Original entry on oeis.org

1, 4, 2, 12, 6, 8, 3, 32, 19, 18, 10, 24, 13, 9, 5, 84, 53, 50, 31, 49, 30, 27, 15, 63, 38, 36, 21, 25, 14, 16, 7, 220, 138, 136, 86, 128, 82, 81, 51, 126, 79, 80, 47, 72, 42, 44, 23, 162, 103, 99, 62, 96, 59, 54, 34, 64, 39, 40, 22, 45, 26, 20, 11, 564, 365
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

This permutation entangles complementary pair odd/even numbers (A005408/A005843) with complementary pair A005117/A013929 (numbers which are squarefree/not squarefree).

Crossrefs

Formula

a(1) = 1, a(2n) = A013929(a(n)), a(2n+1) = A005117(1+a(n)).
For all n, A008966(a(n)) = A000035(n), or equally, mu(a(n)) = n modulo 2, where mu is Moebius mu (A008683). [The same property holds for A088610.]

A243345 a(1)=1; thereafter, if n is k-th squarefree number [i.e., n = A005117(k)], a(n) = 2*a(k-1); otherwise, when n is k-th nonsquarefree number [i.e., n = A013929(k)], a(n) = 2*a(k)+1.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 7, 10, 18, 24, 17, 64, 13, 14, 33, 20, 36, 48, 11, 19, 34, 25, 65, 128, 26, 28, 15, 66, 40, 72, 21, 96, 22, 38, 37, 68, 50, 130, 49, 35, 256, 52, 129, 27, 29, 56, 67, 30, 41, 132, 73, 80, 144, 42, 97, 192, 44, 23, 39, 76, 74, 136, 69, 100
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

Any other fixed points than 1, 2, 6, 9, 135, 147, 914, ... ?
Any other points than 4, 21, 39, 839, 4893, 12884, ... where a(n) = n-1 ?

Crossrefs

Formula

a(1) = 1, and for n>1, if mu(n) = 0, a(n) = 1 + 2*a(A057627(n)), otherwise a(n) = 2*a(A013928(n)), where mu is Moebius mu function (A008683).
For all n > 1, A000035(a(n)+1) = A008966(n) = A008683(n)^2, or equally, a(n) = mu(n) + 1 modulo 2.

A244322 Permutation of natural numbers: a(1)=1, a(2n) = A244991(a(n)), a(2n+1) = A244990(1+a(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 9, 11, 13, 10, 12, 15, 14, 16, 18, 17, 19, 22, 24, 25, 27, 20, 21, 23, 26, 31, 29, 30, 28, 32, 35, 34, 37, 33, 36, 40, 38, 45, 43, 47, 49, 50, 52, 55, 54, 41, 39, 44, 42, 46, 48, 51, 53, 64, 61, 60, 57, 62, 58, 59, 56, 66, 63, 69, 71, 68, 70, 75
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2014

Keywords

Crossrefs

Inverse: A244321.
Similar entanglement permutations: A227413, A237126, A243288, A243344, A243346.

Formula

a(1)=1, a(2n) = A244991(a(n)), a(2n+1) = A244990(1+a(n)).
For all n >= 1, A244992(a(n)) = 1 - A000035(n).
Showing 1-10 of 13 results. Next