cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A243343 a(1)=1; thereafter, if n is the k-th squarefree number (i.e., n = A005117(k)), a(n) = 1 + (2*a(k-1)); otherwise, when n is k-th nonsquarefree number (i.e., n = A013929(k)), a(n) = 2*a(k).

Original entry on oeis.org

1, 3, 7, 2, 15, 5, 31, 6, 14, 11, 63, 4, 13, 29, 23, 30, 127, 10, 9, 62, 27, 59, 47, 12, 28, 61, 22, 126, 255, 21, 19, 8, 125, 55, 119, 26, 95, 25, 57, 58, 123, 45, 253, 46, 60, 511, 43, 254, 20, 18, 39, 124, 17, 54, 251, 118, 111, 239, 53, 94, 191, 51, 24, 56
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

This is an instance of an "entanglement permutation", where two pairs of complementary subsets of natural numbers are interwoven with each other. In this case complementary pair A005117/A013929 (numbers which are squarefree/not squarefree) is entangled with complementary pair odd/even numbers (A005408/A005843).
Thus this shares with permutation A243352 the property that each term of A005117 is mapped bijectively to a unique odd number and likewise each term of A013929 is mapped (bijectively) to a unique even number. However, instead of placing terms into those positions in monotone order this sequence recursively permutes the order of both subsets with the emerging permutation itself.
Are there any other fixed points than 1, 13, 54, 120, 1389, 3183, ... ?

Crossrefs

Formula

a(1) = 1; thereafter, if A008966(n) = 0 (i.e., n is a term of A013929, not squarefree), a(n) = 2*a(A057627(n)); otherwise a(n) = 2*a(A013928(n+1)-1)+1 (where A057627 and A013928(n+1) give the number of integers <= n divisible/not divisible by a square greater than one).
For all n, A000035(a(n)) = A008966(n) = A008683(n)^2, or equally, a(n) = mu(n) modulo 2. The same property holds for A243352.

A245606 Permutation of natural numbers: a(1) = 1, a(2n) = 1 + A003961(a(n)), a(2n+1) = A003961(1+a(n)). [Where A003961(n) shifts the prime factorization of n one step left].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 10, 7, 8, 15, 16, 11, 26, 21, 22, 13, 12, 27, 28, 25, 36, 81, 82, 19, 14, 45, 52, 125, 56, 39, 40, 29, 18, 33, 46, 17, 126, 99, 100, 31, 50, 51, 226, 41, 626, 129, 130, 89, 24, 63, 34, 35, 176, 87, 154, 59, 344, 825, 298, 115, 86, 189, 190, 43, 32, 105, 76, 23, 66, 57, 88, 53, 20
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2014

Keywords

Comments

The even bisection halved gives A245608. The odd bisection incremented by one and halved gives A245708.

Crossrefs

Programs

Formula

a(1) = 1, a(2n) = A243501(a(n)), a(2n+1) = A003961(1+a(n)).
As a composition of related permutations:
a(n) = A064216(A245608(n)).

A243346 a(1) = 1, a(2n) = A005117(1+a(n)), a(2n+1) = A013929(a(n)), where A005117 are squarefree and A013929 are nonsquarefree numbers.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 12, 5, 9, 13, 24, 10, 18, 19, 32, 7, 16, 14, 25, 21, 36, 38, 63, 15, 27, 30, 49, 31, 50, 53, 84, 11, 20, 26, 45, 22, 40, 39, 64, 34, 54, 59, 96, 62, 99, 103, 162, 23, 44, 42, 72, 47, 80, 79, 126, 51, 81, 82, 128, 86, 136, 138, 220, 17, 28, 33, 52, 41, 68, 73, 120
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

This permutation entangles complementary pair A005843/A005408 (even/odd numbers) with complementary pair A005117/A013929 (numbers which are squarefree/are not squarefree).

Crossrefs

Formula

a(1) = 1, a(2n) = A005117(1+a(n)), a(2n+1) = A013929(a(n)).
For all n > 1, A008966(a(n)) = A000035(n+1), or equally, mu(a(n)) + 1 = n modulo 2, where mu is Moebius mu (A008683). [A property shared with a simpler variant A075378].

A243345 a(1)=1; thereafter, if n is k-th squarefree number [i.e., n = A005117(k)], a(n) = 2*a(k-1); otherwise, when n is k-th nonsquarefree number [i.e., n = A013929(k)], a(n) = 2*a(k)+1.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 7, 10, 18, 24, 17, 64, 13, 14, 33, 20, 36, 48, 11, 19, 34, 25, 65, 128, 26, 28, 15, 66, 40, 72, 21, 96, 22, 38, 37, 68, 50, 130, 49, 35, 256, 52, 129, 27, 29, 56, 67, 30, 41, 132, 73, 80, 144, 42, 97, 192, 44, 23, 39, 76, 74, 136, 69, 100
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

Any other fixed points than 1, 2, 6, 9, 135, 147, 914, ... ?
Any other points than 4, 21, 39, 839, 4893, 12884, ... where a(n) = n-1 ?

Crossrefs

Formula

a(1) = 1, and for n>1, if mu(n) = 0, a(n) = 1 + 2*a(A057627(n)), otherwise a(n) = 2*a(A013928(n)), where mu is Moebius mu function (A008683).
For all n > 1, A000035(a(n)+1) = A008966(n) = A008683(n)^2, or equally, a(n) = mu(n) + 1 modulo 2.

A244322 Permutation of natural numbers: a(1)=1, a(2n) = A244991(a(n)), a(2n+1) = A244990(1+a(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 9, 11, 13, 10, 12, 15, 14, 16, 18, 17, 19, 22, 24, 25, 27, 20, 21, 23, 26, 31, 29, 30, 28, 32, 35, 34, 37, 33, 36, 40, 38, 45, 43, 47, 49, 50, 52, 55, 54, 41, 39, 44, 42, 46, 48, 51, 53, 64, 61, 60, 57, 62, 58, 59, 56, 66, 63, 69, 71, 68, 70, 75
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2014

Keywords

Crossrefs

Inverse: A244321.
Similar entanglement permutations: A227413, A237126, A243288, A243344, A243346.

Formula

a(1)=1, a(2n) = A244991(a(n)), a(2n+1) = A244990(1+a(n)).
For all n >= 1, A244992(a(n)) = 1 - A000035(n).

A088610 Starting with n = 1, a(n) is the smallest squarefree number not included earlier if n is odd, else n is the smallest nonsquarefree number.

Original entry on oeis.org

1, 4, 2, 8, 3, 9, 5, 12, 6, 16, 7, 18, 10, 20, 11, 24, 13, 25, 14, 27, 15, 28, 17, 32, 19, 36, 21, 40, 22, 44, 23, 45, 26, 48, 29, 49, 30, 50, 31, 52, 33, 54, 34, 56, 35, 60, 37, 63, 38, 64, 39, 68, 41, 72, 42, 75, 43, 76, 46, 80, 47, 81, 51, 84, 53, 88, 55, 90, 57, 92, 58, 96
Offset: 1

Views

Author

Amarnath Murthy, Oct 16 2003

Keywords

Comments

From Antti Karttunen, Jun 04 2014: (Start)
Squarefree (A005117) and nonsquarefree numbers (A013929) interleaved, the former at odd n and the latter at even n.
A243344 is a a "recursivized" variant of this permutation. Like this one, it also satisfies the given simple identity linking the parity of n with the Moebius mu-function. (End)

Crossrefs

Inverse: A243352.
Bisections: A005117, A013929.

Programs

  • Mathematica
    With[{max = 100}, s = Select[Range[max], SquareFreeQ]; ns = Complement[Range[max], s]; Riffle[s[[1 ;; Length[ns]]], ns]] (* Amiram Eldar, Mar 04 2024 *)
  • Scheme
    (define (A088610 n) (if (even? n) (A013929 (/ n 2)) (A005117 (/ (+ 1 n) 2))))

Formula

From Antti Karttunen, Jun 04 2014: (Start)
a(2n) = A013929(n), a(2n-1) = A005117(n).
For all n, A008966(a(n)) = A000035(n), or equally, mu(a(n)) = n modulo 2, where mu is Moebius mu (A008683). (End)

Extensions

More terms from Ray Chandler, Oct 18 2003

A245614 Permutation of natural numbers: a(1)=1; thereafter, if n is k-th number whose greatest prime factor has an odd index [i.e., n = A244991(k)], a(n) = A026424(a(k)), otherwise, when n is k-th number whose greatest prime factor has an even index [i.e., n = A244990(1+k)], a(n) = A028260(1+a(k)).

Original entry on oeis.org

1, 2, 4, 3, 7, 6, 10, 5, 9, 12, 11, 16, 15, 24, 18, 8, 17, 14, 22, 20, 26, 19, 29, 25, 28, 36, 35, 55, 39, 44, 31, 13, 30, 27, 21, 38, 34, 51, 46, 42, 37, 57, 40, 47, 32, 52, 45, 62, 56, 50, 68, 60, 82, 81, 67, 121, 86, 93, 105, 72, 65, 79, 33, 59, 64, 23, 53, 48, 41, 58, 49, 85, 71, 77, 66, 111, 99
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Comments

This shares with the permutation A122111 the property that each term of A244990 is mapped to a unique term of A028260 and each term of A244991 is mapped to a unique term of A026424.

Crossrefs

Formula

a(1) = 1, and for n > 1, if A244992(n) = 1, a(n) = A026424(a(A244989(n))), otherwise a(n) = A028260(1+a(A244988(n)-1)).
As a composition of related permutations:
a(n) = A245604(A244321(n)).
For all n >= 1, A244992(n) = A066829(a(n)).

A285112 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = A005117(1+a(n)), a(2n+1) = A065642(a(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 6, 8, 7, 25, 14, 27, 10, 12, 13, 16, 11, 49, 39, 125, 22, 28, 42, 81, 15, 20, 19, 18, 21, 169, 26, 32, 17, 121, 79, 343, 65, 117, 205, 625, 35, 44, 43, 56, 69, 84, 133, 243, 23, 45, 33, 40, 31, 361, 30, 24, 34, 63, 277, 2197, 41, 52, 53, 64, 29, 289, 199, 1331, 130, 6241, 563, 2401, 106, 325, 193, 351, 335, 1025, 1030, 3125, 58
Offset: 0

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
This sequence can be represented as a binary tree. Each left hand child is produced as A005117(1+n), and each right hand child as A065642(n), when the parent node contains n >= 2:
1
|
...................2...................
3 4
5......../ \........9 6......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 25 14 27 10 12 13 16
11 49 39 125 22 28 42 81 15 20 19 18 21 169 26 32
etc.

Crossrefs

Inverse: A285111.
Similar or related permutations: A243344, A243346, A252753, A277696, A284572.
Cf. also arrays A284457 & A284311.

Formula

a(0) = 1, a(1) = 2, a(2n) = A005117(1+a(n)), a(2n+1) = A065642(a(n)).

A284572 Permutation of natural numbers: a(1) = 1, a(2n) = A005117(1+a(n)), a(2n+1) = A065642(1+a(n)).

Original entry on oeis.org

1, 2, 4, 3, 9, 6, 25, 5, 8, 14, 20, 10, 49, 39, 52, 7, 12, 13, 27, 22, 45, 33, 63, 15, 121, 79, 80, 65, 50, 85, 2809, 11, 16, 19, 169, 21, 28, 42, 56, 35, 529, 73, 92, 55, 68, 103, 128, 23, 32, 199, 244, 130, 100, 131, 243, 106, 132, 82, 153, 139, 172, 4619, 5620, 17, 18, 26, 289, 31, 40, 277, 340, 34, 44, 43, 841, 69, 1849, 91, 171, 58, 48
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

This sequence can be represented as a binary tree. Each left hand child is produced as A005117(1+n), and each right hand child as A065642(1+n), when the parent node contains n:
1
................../ \..................
2 4
3......../ \........9 6......../ \........25
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
5 8 14 20 10 49 39 52
7 12 13 27 22 45 33 63 15 121 79 80 65 50 85 2809
etc.
Compare to A285112.

Crossrefs

Inverse: A284571.
Similar or related permutations: A243344, A243346, A277696, A285112.

Formula

a(1) = 1, a(2n) = A005117(1+a(n)), a(2n+1) = A065642(1+a(n)).
Showing 1-9 of 9 results.