cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A263769 Smallest prime q such that q == -1 (mod prime(n)-1).

Original entry on oeis.org

2, 3, 3, 5, 19, 11, 31, 17, 43, 83, 29, 71, 79, 41, 137, 103, 173, 59, 131, 139, 71, 233, 163, 263, 191, 199, 101, 211, 107, 223, 251, 389, 271, 137, 443, 149, 311, 647, 331, 859, 1423, 179, 379, 191, 587, 197, 419, 443
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

a(n): A000040(1), A065091(1), A002145(1), A007528(1), A030433(1), A068231(1), A127576(1), A061242(1), A141857(1), A141976(1), A132236(1), A142111(1), A142198(1), A141898(1), A141926(1), A142531(1), A142004(1), A142799(1), A142068(1), A142099(1), ...
Smallest prime q such that (prime(n)^2 + q*prime(n))/(prime(n) + 1) is an integer.

Examples

			a(4) = 5 because 5 == -1 (mod prime(4)-1) and is prime.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 100 do
      k:= ithprime(n)-1;
      q:= 2;
      while (1 + q) mod k <> 0 do
        q:= nextprime(q)
      od;
      A[n]:= q;
    od:
    seq(A[i],i=1..1000); # Robert Israel, Oct 26 2015
  • Mathematica
    Table[q = 2; z = Prime@ n - 1; While[Mod[q, z] != z - 1, q = NextPrime@ q]; q, {n, 59}] (* Michael De Vlieger, Oct 26 2015 *)

Extensions

Corrected and edited by Robert Israel, Oct 26 2015,

A306431 Least number x > 1 such that n*x divides 1 + Sum_{k=1..x-1} k^(x-1).

Original entry on oeis.org

2, 3, 13, 7, 19, 31, 41, 31, 13, 19, 43, 31, 23, 83, 139, 31, 61, 67, 113, 79, 251, 43, 19, 31, 199, 23, 13, 167, 53, 139, 83, 127, 157, 67, 293, 431, 443, 151, 103, 79, 61, 251, 113, 47, 337, 19, 179, 31, 41, 199, 67, 23, 19, 499, 181, 367, 607, 139, 257, 359
Offset: 1

Views

Author

Paolo P. Lava, Apr 05 2019

Keywords

Comments

If n = 1, all the solutions of x | 1 + Sum_{k=1..x-1} k^(x-1) should be prime numbers, according to Giuga's conjecture.
If n*x | 1 + Sum_{k=1..x-1} k^(x-1), then certainly x does, so Giuga's conjecture would say x must be prime. Similarly if x^n divides it, so does x, so again Giuga would say x is prime. - Robert Israel, Apr 26 2019
E.g., the first solution for x^2 | 1 + Sum_{k=1..x-1} k^(x-1) is x = 1277, that is prime.

Examples

			a(4) = 7 because (1 + 1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6) / (4*7) = 67172 / 28 = 2399 and it is the least prime to have this property.
		

Crossrefs

Cf. A191677. All the solutions for n = m: A000040 (m=1), A002145 (m=2), A007522 (m=4), A127576 (m=8), A141887 (m=10), A127578 (m=16), A142198 (m=20), A127579 (m=32), A095995 (m=50).

Programs

  • Maple
    P:=proc(j) local k,n; for n from 2 to 10^6 do
    if frac((add(k^(n-1),k=1..n-1)+1)/(j*n))=0
    then RETURN(n); break; fi; od; end: seq(P(i),i=1..60);
  • Mathematica
    a[n_] := For[x = 2, True, x++, If[Divisible[1+Sum[k^(x-1), {k, x-1}], n x], Return[x]]];
    Array[a, 60] (* Jean-François Alcover, Oct 16 2020 *)
  • PARI
    a(n) = my(x=2); while (((1 + sum(k=1, x-1, k^(x-1))) % (n*x)), x++); x; \\ Michel Marcus, Apr 27 2019

Formula

Least solution of n*x | 1 + Sum_{k=1..x-1} k^(x-1), for n = 1, 2, 3, ...
Showing 1-2 of 2 results.