A142717 First (leftmost) odd term in the n-th row of triangle A120070.
3, 5, 15, 21, 35, 45, 63, 77, 99, 117, 143, 165, 195, 221, 255, 285, 323, 357, 399, 437, 483, 525, 575, 621, 675, 725, 783, 837, 899, 957, 1023, 1085, 1155, 1221, 1295, 1365, 1443, 1517, 1599, 1677, 1763, 1845, 1935, 2021, 2115, 2205, 2303, 2397, 2499, 2597
Offset: 1
Keywords
Examples
The odd terms of A120070 build the irregular triangle 3; 5; 15,7; 21,9; 35,27,11; 45,33,13; 63,55,39,15; The leftmost column defines this sequence.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Mathematica
A142717[n_]:=(n+1)^2-If[OddQ[n],1,4];Array[A142717,100] (* or *) LinearRecurrence[{2,0,-2,1},{3,5,15,21},100] (* Paolo Xausa, Dec 05 2023 *)
Formula
First differences: a(n+1)-a(n) = A142954(n).
From R. J. Mathar, Oct 24 2008: (Start)
a(n) = (n+1)^2-1 = A000466((n+1)/2) if n odd.
a(n) = (n+1)^2-4 = A078371(n/2-1) if n even.
a(n) = 2*a(n-1) -2*a(n-3) +a(n-4).
G.f.: x(3-x+5x^2-3x^3)/((1+x)(1-x)^3). (End)
Extensions
Edited and extended by R. J. Mathar, Oct 24 2008
Comments