A142723 Decimal expansion of the continued fraction whose terms are half the gaps of the odd nonprimes A014076.
4, 3, 0, 3, 2, 3, 9, 3, 0, 1, 9, 8, 3, 1, 2, 2, 5, 4, 7, 5, 0, 7, 2, 5, 6, 5, 3, 7, 1, 2, 9, 4, 6, 1, 0, 1, 1, 0, 0, 5, 8, 7, 4, 9, 8, 2, 5, 6, 1, 5, 9, 3, 3, 2, 7, 6, 9, 9, 6, 6, 3, 7, 1, 8, 1, 0, 8, 6, 7, 0, 5, 5, 2, 1, 6, 2, 6, 3, 9, 5, 7, 8, 9, 0, 1, 9, 6, 0, 0, 2, 4, 3, 7, 4, 8, 7, 1, 5, 5, 8, 7, 3, 6, 9, 2
Offset: 1
Examples
4.30323930198312254750725653712946101100587498256159332769966371810867...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
a = Flatten[Table[If[PrimeQ[2*n + 1], {}, 2*n - 1], {n, 0, 200}]]; b = Table[(a[[n + 1]] - a[[n]])/2, {n, 1, Length[a] - 1}]; FromContinuedFraction[b]; c = N[%, 200]; Table[Floor[Mod[c*10^n, 10]], {n, 0, 201}] (* Bagula and Adamson *) RealDigits[FromContinuedFraction[Differences[Select[Range[-1, 399, 2], !PrimeQ[# + 2]&]]/2], 10, 201][[1]] (* Charles R Greathouse IV, Feb 03 2011 *)
-
PARI
a=contfracpnqn(D(select(vector(99,n,2*n-1),x->!isprime(x)))/2); a[1,1]/a[2,1]*1. /* OK for 35 digits. For D(.) see A137822 */ \\ M. F. Hasler, Sep 29 2011
Comments