A142724 Irregular triangle read by rows: row n gives coefficients in expansion of Product_{k=1..n} (1 + x^(2*k + 1)) for n >= 0.
1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 1, 2, 1, 2, 0, 2, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2
Offset: 0
Examples
Triangle begins: {1} (the empty product) {1, 0, 0, 1}, {1, 0, 0, 1, 0, 1, 0, 0, 1}, {1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1}, {1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1}, {1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 1, 2, 1, 2, 0, 2, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1}, ...
References
- Borel, A. and Chevalley, C., The Betti numbers of the exceptional groups, Mem. Amer. Math. Soc. 1955, no. 14, pp 1-9.
- Samuel I. Goldberg, Curvature and Homology, Dover, New York, 1998, page 144
Links
- Alois P. Heinz, Rows n = 0..40, flattened
Crossrefs
Programs
-
Maple
A:=n->mul(1+x^(2*r+1),r=1..n); for n from 1 to 12 do lprint(seriestolist(series(A(n),x,10000))); od:
-
Mathematica
Clear[p, x, n, m]; p[x_, n_] = Product[(1 + x^(2*k + 1)), {k, 1, n}]; Table[CoefficientList[p[x, n], x], {n, 1, 10}]; Flatten[%]
Formula
p(x,n) = Product[(1 + x^(2*k + 1)), {k, 1, n}]; t(n,m)=coefficients(p(x,n)).
Extensions
Edited by N. J. A. Sloane, Dec 25 2010
Comments