cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142724 Irregular triangle read by rows: row n gives coefficients in expansion of Product_{k=1..n} (1 + x^(2*k + 1)) for n >= 0.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 1, 2, 1, 2, 0, 2, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 26 2008

Keywords

Comments

For n >= 1, row n is the Poincaré polynomial for the Lie group A_n.
Row sums are powers of 2.

Examples

			Triangle begins:
{1} (the empty product)
{1, 0, 0, 1},
{1, 0, 0, 1, 0, 1, 0, 0, 1},
{1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1},
{1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1},
{1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 1, 2, 1, 2, 0, 2, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1},
...
		

References

  • Borel, A. and Chevalley, C., The Betti numbers of the exceptional groups, Mem. Amer. Math. Soc. 1955, no. 14, pp 1-9.
  • Samuel I. Goldberg, Curvature and Homology, Dover, New York, 1998, page 144

Crossrefs

Programs

  • Maple
    A:=n->mul(1+x^(2*r+1),r=1..n);
    for n from 1 to 12 do lprint(seriestolist(series(A(n),x,10000))); od:
  • Mathematica
    Clear[p, x, n, m]; p[x_, n_] = Product[(1 + x^(2*k + 1)), {k, 1, n}]; Table[CoefficientList[p[x, n], x], {n, 1, 10}]; Flatten[%]

Formula

p(x,n) = Product[(1 + x^(2*k + 1)), {k, 1, n}]; t(n,m)=coefficients(p(x,n)).

Extensions

Edited by N. J. A. Sloane, Dec 25 2010