cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142956 Primes of the form -3*x^2 + 4*x*y + 5*y^2 (as well as of the form 6*x^2 + 10*x*y + y^2).

Original entry on oeis.org

5, 17, 61, 73, 101, 137, 149, 157, 197, 229, 233, 277, 313, 349, 353, 389, 397, 457, 461, 541, 557, 577, 593, 613, 617, 653, 701, 709, 733, 757, 761, 769, 809, 821, 853, 881, 929, 937, 997, 1013, 1033, 1049, 1061, 1069, 1109, 1201, 1213, 1217, 1277, 1289
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (laucabfer(AT)alum.us.es), Jul 14 2008

Keywords

Comments

Discriminant = 76. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

Examples

			a(2) = 17 because we can write 17 = -3*3^2 + 4*3*2 + 5*2^2 (or 17 = 6*1^2 + 10*1*1 + 1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.

Crossrefs

Cf. A142955 (d=76). A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).

Programs

  • Mathematica
    Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -3*x^2 + 4*x*y + 5*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)

Extensions

More terms from Colin Barker, Apr 05 2015
Edited by M. F. Hasler, Feb 18 2022