A142977 Table of coefficients in the expansion of the rational function 1/{(1-x)^2 - y*(1+x)^2}.
1, 1, 2, 1, 6, 3, 1, 10, 19, 4, 1, 14, 51, 44, 5, 1, 18, 99, 180, 85, 6, 1, 22, 163, 476, 501, 146, 7, 1, 26, 243, 996, 1765, 1182, 231, 8, 1, 30, 339, 1804, 4645, 5418, 2471, 344, 9, 1, 34, 451, 2964, 10165, 17718, 14407, 4712, 489, 10
Offset: 0
Examples
The square array begins n\k| 0...1....2.....3.....4.......5 ------------------------------------ .0.| 1...2....3.....4......5......6 ... A000027 .1.| 1...6...19....44.....85....146 ... A005900 .2.| 1..10...51...180....501...1182 ... A069038 .3.| 1..14...99...476...1765...5418 ... A099193 .4.| 1..18..163...996...4645..17718 ... A099196 .5.| 1..22..243..1804..10165..46530 ... A300624 ...
Links
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Crossrefs
Programs
-
Maple
with(combinat): T:=(n,k) -> add(binomial(2n,k-j)*binomial(2n+j+1,j), j = 0..k): for n from 0 to 9 do seq(T(n,k), k = 0..9) end do;
Formula
T(n,k) = Sum_{j = 0..k} C(2*n, k-j)*C(2*n+j+1, j).
O.g.f.: 1/{(1 - x)^2 - y*(1 + x)^2} = Sum_{n, k >= 0} T(n,k)*x^k*y^n = 1/(1 - y) * Sum_{m >= 0} U(m, (1 + y)/(1 - y))*x^m, where U(m, y) denotes the m-th Chebyshev polynomial of the second kind.
O.g.f. row n: (1 + x)^(2*n)/(1 - x)^(2*n+2).
O.g.f. column k: 1/(1 - y)*U(k, (1 + y)/(1 - y)).
The entries in the n-th row appear in the series acceleration formula for the constant log(2): Sum_{k >= 1} (-1)^(k+1)/(T(n,k)*T(n,k+1)) = 1 + (4*n + 2)*( log(2) - (1 - 1/2 + 1/3 - ... + 1/(2*n + 1)) ).
For example, n = 1 gives log(2) = 4/6 + (1/6)*( 1/(1*6) - 1/(6*19) + 1/(19*44) - 1/(44*85) + ... ). See A142983 for further details.
Extensions
Restored missing program. - Peter Bala, Oct 02 2008
Comments