cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142977 Table of coefficients in the expansion of the rational function 1/{(1-x)^2 - y*(1+x)^2}.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 10, 19, 4, 1, 14, 51, 44, 5, 1, 18, 99, 180, 85, 6, 1, 22, 163, 476, 501, 146, 7, 1, 26, 243, 996, 1765, 1182, 231, 8, 1, 30, 339, 1804, 4645, 5418, 2471, 344, 9, 1, 34, 451, 2964, 10165, 17718, 14407, 4712, 489, 10
Offset: 0

Views

Author

Peter Bala, Jul 15 2008

Keywords

Comments

The row entries are the figurate numbers of the odd dimensional cross polytopes. See A142978 for the complete table of figurate numbers of n-dimensional cross polytopes. The rows are the partial sums of the even-numbered rows of the square array of Delannoy numbers A008288.

Examples

			The square array begins
 n\k| 0...1....2.....3.....4.......5
------------------------------------
 .0.| 1...2....3.....4......5......6 ... A000027
 .1.| 1...6...19....44.....85....146 ... A005900
 .2.| 1..10...51...180....501...1182 ... A069038
 .3.| 1..14...99...476...1765...5418 ... A099193
 .4.| 1..18..163...996...4645..17718 ... A099196
 .5.| 1..22..243..1804..10165..46530 ... A300624
 ...
		

Crossrefs

Cf. A005900 (row 1), A008288, A069038 (row 2), A099193 (row 3), A099196 (row 4), A300624 (row 5), A142978, A142983.

Programs

  • Maple
    with(combinat): T:=(n,k) -> add(binomial(2n,k-j)*binomial(2n+j+1,j), j = 0..k): for n from 0 to 9 do seq(T(n,k), k = 0..9) end do;

Formula

T(n,k) = Sum_{j = 0..k} C(2*n, k-j)*C(2*n+j+1, j).
O.g.f.: 1/{(1 - x)^2 - y*(1 + x)^2} = Sum_{n, k >= 0} T(n,k)*x^k*y^n = 1/(1 - y) * Sum_{m >= 0} U(m, (1 + y)/(1 - y))*x^m, where U(m, y) denotes the m-th Chebyshev polynomial of the second kind.
O.g.f. row n: (1 + x)^(2*n)/(1 - x)^(2*n+2).
O.g.f. column k: 1/(1 - y)*U(k, (1 + y)/(1 - y)).
The entries in the n-th row appear in the series acceleration formula for the constant log(2): Sum_{k >= 1} (-1)^(k+1)/(T(n,k)*T(n,k+1)) = 1 + (4*n + 2)*( log(2) - (1 - 1/2 + 1/3 - ... + 1/(2*n + 1)) ).
For example, n = 1 gives log(2) = 4/6 + (1/6)*( 1/(1*6) - 1/(6*19) + 1/(19*44) - 1/(44*85) + ... ). See A142983 for further details.

Extensions

Restored missing program. - Peter Bala, Oct 02 2008