cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143009 Crystal ball sequence for the A3 x A3 lattice.

Original entry on oeis.org

1, 25, 253, 1445, 5741, 17861, 46705, 107353, 223465, 430081, 776821, 1331485, 2184053, 3451085, 5280521, 7856881, 11406865, 16205353, 22581805, 30927061, 41700541, 55437845, 72758753, 94375625, 121102201, 153862801, 193701925, 241794253, 299455045, 368150941, 449511161, 545339105, 657624353, 788555065, 940530781, 1116175621, 1318351885, 1550174053, 1815023185, 2116561721
Offset: 0

Views

Author

Peter Bala, Jul 22 2008

Keywords

Comments

The A_3 lattice consists of all vectors v = (a,b,c,d) in Z^4 such that a+b+c+d = 0. The lattice is equipped with the norm ||v|| = 1/2*(|a| + |b| + |c| + |d|). Pairs of lattice points (v,w) in the product lattice A_3 x A_3 have norm ||(v,w)|| = ||v|| + ||w||. Then the k-th term in the crystal ball sequence for the A_3 x A_3 lattice gives the number of such pairs (v,w) for which ||(v,w)|| is less than or equal to k.

Crossrefs

Row 3 of A143007.

Programs

  • Maple
    p := n -> (10*n^6+30*n^5+85*n^4+120*n^3+121*n^2+66*n+18)/18: seq(p(n), n = 0..24);
  • Mathematica
    A143009[n_] := n*(n + 1)*(5*n*(n + 1)*(2*n*(n + 1) + 11) + 66)/18 + 1;
    Array[A143009, 50, 0] (* Paolo Xausa, Aug 21 2025 *)

Formula

a(n) = (10*n^6+30*n^5+85*n^4+120*n^3+121*n^2+66*n+18)/18.
O.g.f.: 1/(1-x)*[Legendre_P(3,(1+x)/(1-x))]^2.
Apery's constant zeta(3) = (1+1/2^3+1/3^3) + Sum_{n >= 1} 1/(n^3*a(n-1)*a(n)).
G.f.: (1+x)^2*(1+8*x+x^2)^2/(1-x)^7. - Colin Barker, Mar 16 2012