cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143011 Crystal ball sequence for the A_5 x A_5 lattice.

Original entry on oeis.org

1, 61, 1441, 17861, 142001, 819005, 3713305, 13980205, 45432805, 131091505, 342981013, 826861993, 1859914733, 3942293993, 7937011013, 15276834025, 28261896025, 50477521525, 87368496025, 147013666525, 241153442041, 386532523301, 606631094081, 933869816501
Offset: 0

Views

Author

Peter Bala, Jul 22 2008

Keywords

Comments

The A_5 lattice consists of all vectors v = (x_1,...,x_6) in Z^6 such that sum {i = 1..6} x_i = 0. The lattice is equipped with the norm ||v|| = 1/2*(sum {i = 1..6} |x_i|). Pairs of lattice points (v,w) in the product lattice A_5 x A_5 have norm ||(v,w)|| = ||v|| + ||w||. Then the k-th term in the crystal ball sequence for the A_5 x A_5 lattice gives the number of such pairs (v,w) for which ||(v,w)|| is less than or equal to k.

Crossrefs

Row 5 of A143007.

Programs

  • Maple
    p := n -> (126*n^10 +630*n^9 +4095*n^8 +12600*n^7 +36148*n^6 +66990*n^5 +100555*n^4 +102900*n^3 +75076*n^2 +32880*n +7200)/7200: seq(p(n), n = 0..24);
  • Mathematica
    A143011[n_] := (n*(n + 1)*(7*n*(n + 1)*(n*(n + 1)*(9*n*(n + 1)*(2*n*(n + 1) + 45) + 2644) + 6028) + 32880))/7200 + 1;
    Array[A143011, 50, 0] (* Paolo Xausa, Aug 21 2025 *)

Formula

a(n) = (126*n^10 +630*n^9 +4095*n^8 +12600*n^7 +36148*n^6 +66990*n^5 +100555*n^4 +102900*n^3 +75076*n^2 +32880*n +7200)/7200.
O.g.f.: 1/(1-x)*[Legendre_P(5,(1+x)/(1-x))]^2.
Apery's constant zeta(3) = (1+1/2^3+1/3^3+1/4^3+1/5^3) + Sum_{n = 1..oo} 1/(n^3*a(n-1)*a(n)).
G.f.: (1+x)^2*(1+24*x+76*x^2+24*x^3+x^4)^2/(1-x)^11. [Colin Barker, Apr 16 2012]