A143011 Crystal ball sequence for the A_5 x A_5 lattice.
1, 61, 1441, 17861, 142001, 819005, 3713305, 13980205, 45432805, 131091505, 342981013, 826861993, 1859914733, 3942293993, 7937011013, 15276834025, 28261896025, 50477521525, 87368496025, 147013666525, 241153442041, 386532523301, 606631094081, 933869816501
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Programs
-
Maple
p := n -> (126*n^10 +630*n^9 +4095*n^8 +12600*n^7 +36148*n^6 +66990*n^5 +100555*n^4 +102900*n^3 +75076*n^2 +32880*n +7200)/7200: seq(p(n), n = 0..24);
-
Mathematica
A143011[n_] := (n*(n + 1)*(7*n*(n + 1)*(n*(n + 1)*(9*n*(n + 1)*(2*n*(n + 1) + 45) + 2644) + 6028) + 32880))/7200 + 1; Array[A143011, 50, 0] (* Paolo Xausa, Aug 21 2025 *)
Formula
a(n) = (126*n^10 +630*n^9 +4095*n^8 +12600*n^7 +36148*n^6 +66990*n^5 +100555*n^4 +102900*n^3 +75076*n^2 +32880*n +7200)/7200.
O.g.f.: 1/(1-x)*[Legendre_P(5,(1+x)/(1-x))]^2.
Apery's constant zeta(3) = (1+1/2^3+1/3^3+1/4^3+1/5^3) + Sum_{n = 1..oo} 1/(n^3*a(n-1)*a(n)).
G.f.: (1+x)^2*(1+24*x+76*x^2+24*x^3+x^4)^2/(1-x)^11. [Colin Barker, Apr 16 2012]
Comments