cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A085614 Number of elementary arches of size n.

Original entry on oeis.org

1, 3, 16, 105, 768, 6006, 49152, 415701, 3604480, 31870410, 286261248, 2604681690, 23957864448, 222399744300, 2080911654912, 19604537460045, 185813170126848, 1770558814528770, 16951376923852800, 162984598242674670
Offset: 1

Views

Author

N. J. A. Sloane, Jul 10 2003

Keywords

Crossrefs

Programs

  • Maple
    with(combstruct); ar := {EA = Union(Sequence(EA, card >= 2), Prod(Z, Sequence(EA), Sequence(EA))), C=Union(Z, Prod(Z,Z,Sequence(EA), Sequence(EA), Sequence(Union(Sequence(EA,card>=1), Prod(Z,Sequence(EA),Sequence(EA))))))}; seq(count([EA,ar], size=i),i=1..20);
  • Mathematica
    Rest[CoefficientList[Series[1/6*Sqrt[3]*Sin[1/3*ArcSin[6*Sqrt[3]*x]] - 1/2*Cos[1/3*ArcSin[6*Sqrt[3]*x]],{x,0,20}],x]] (* Vaclav Kotesovec, Oct 21 2012 *)
    Rest[CoefficientList[InverseSeries[Series[x - 3*x^2 + 2*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
    (* From Dixon J. Jones, Apr 15 2021: (Start) *)
    Table[4^n Gamma[(3n + 2)/2]/(Gamma[(n + 2)/2](n + 1)!), {n, 0, 20}]
    Table[4^n Pochhammer[(n + 2)/2, n]/(n + 1)!, {n, 0, 20}] (* End *)
  • PARI
    a(n)=if(n<1,0,polcoeff(serreverse(x-3*x^2+2*x^3+x*O(x^n)),n))

Formula

G.f. is the series reversion of x-3*x^2+2*x^3.
a(n) = 2^n*(3*n)!!/((n+1)!*n!!). - Maxim Krikun (krikun(AT)iecn.u-nancy.fr), May 25 2007
G.f.: 1/6*sqrt(3)*sin(1/3*arcsin(6*sqrt(3)*x))-1/2*cos(1/3*arcsin(6*sqrt(3)*x)). - Vaclav Kotesovec, Oct 21 2012
Conjecture: n*(n-1)*a(n) +(n-1)*(n-2)*a(n-1) -12*(3*n-5)*(3*n-7)*a(n-2) -12*(3*n-8)*(3*n-10)*a(n-3) = 0. - R. J. Mathar, Oct 18 2013
a(n) ~ 2^(n - 3/2) * 3^(3*n/2 - 1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2017
From Dixon J. Jones, Apr 15 2021: (Start)
a(n) = A206300(n)/2 = abs(A224884(n))/2 for n>=1.
a(n) = 4^n Gamma((3*n + 2)/2)/(Gamma((n + 2)/2)*(n + 1)!).
a(n) = (4^n*((n + 2)/2)_n)/(n + 1)!, where (x)_k is the Pochhammer symbol. (End)

A143020 Sum of the distances from a fixed node (root) to the next node in all non-crossing graphs on n nodes on a circle.

Original entry on oeis.org

1, 5, 31, 218, 1658, 13293, 110675, 947870, 8297926, 73924162, 668038006, 6108962580, 56426393268, 525673683069, 4933634156571, 46604425575734, 442753710351950, 4227598589181750, 40549714320544770, 390522305786747820
Offset: 2

Views

Author

Emeric Deutsch, Jul 30 2008

Keywords

Examples

			a(3)=5 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the distances from A to B are 1, 1, 1 and 2, respectively.
		

Crossrefs

Programs

  • Maple
    L:=proc(p,q,r) options operator, arrow: sum(binomial(q,i)*binomial(r+p-1-i, r-1),i=0..min(p,q)) end proc: T:=proc(n,k) options operator, arrow: k*L(n-k-1, 3*n-k-4,n-1)/(n-1) end proc: seq(add(k*T(n,k),k=1..n-1),n=2..22);
  • Mathematica
    t[n_, k_] := k*L[n - k - 1, 3*n - k - 4, n-1]/(n-1); L[p_, q_, r_] := Sum[ Binomial[q, i]*Binomial[r + p - 1 - i, r - 1], {i, 0, Min[p, q]}]; a[n_] := Sum[k*t[n, k], {k, 1, n-1}] ; Table[a[n], {n, 2, 21}] (* Jean-François Alcover, Oct 05 2011, after Maple *)
  • PARI
    Vec((g->g*(g-x)/x)(x + x*serreverse((x-x^2)/(1+x)^3 + O(x^20)))) \\ Andrew Howroyd, Nov 17 2017
    
  • PARI
    L(p,q,r)={sum(i=0, min(p,q), binomial(q,i)*binomial(r+p-1-i,r-1))}
    a(n)=sum(k=1, n-1, k^2*L(n-k-1,3*n-k-4, n-1)/(n-1)); \\ Andrew Howroyd, Nov 17 2017

Formula

a(n) = Sum_{k=1..n-1} k*T(n,k), where T(n,k) = k*L(n-k-1,3n-k-4,n-1)/(n-1) (n >= 2, 1 <= k <= n-1), with L(p,q,r)=[u^p](1+u)^q/(1-u)^r = Sum[binomial(q,i)binomial(r+p-1-i,r-1), i=0..min(p,q)] (T(n,k) is A143018).
G.f.: g(g-z)/z, where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3zg + 2z^2 = 0 (A007297).
a(n) = Sum_{k=1..n-1} k*A143018(n, k).
Conjecture: -(n-1) *(n+1) *(39*n^2-136*n+60) *a(n) +60 *(-18*n^2+57*n-7) *a(n-1) +12 *(3*n-7) *(3*n-8) *(39*n^2-58*n-37) *a(n-2)=0. - R. J. Mathar, May 10 2018
Showing 1-2 of 2 results.