cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143022 Triangle read by rows: T(n,k) is the number of non-crossing connected graphs on n nodes on a circle in which the root (a distinguished node) has degree k (n >= 2, 1 <= k <= n-1).

Original entry on oeis.org

1, 2, 2, 9, 10, 4, 54, 62, 32, 8, 374, 436, 248, 88, 16, 2820, 3316, 1984, 816, 224, 32, 22485, 26586, 16404, 7320, 2416, 544, 64, 186494, 221350, 139424, 65512, 24032, 6688, 1280, 128, 1592778, 1895740, 1211848, 590040, 231824, 73088, 17664, 2944
Offset: 2

Views

Author

Emeric Deutsch, Jul 30 2008

Keywords

Comments

Row sums yield A007297.
T(n,1) = A089436(n).
Sum_{k=1..n-1} k*T(n,k) = A143023.

Examples

			T(3,1)=2, T(3,2)=2 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the node A has degrees 2, 2, 1 and 1, respectively.
Triangle starts:
     1;
     2,    2;
     9,   10,    4;
    54,   62,   32,   8;
   374,  436,  248,  88,  16;
  2820, 3316, 1984, 816, 224, 32;
		

Crossrefs

Programs

  • Maple
    L:=proc(p,q,r) options operator, arrow: sum(binomial(q, i)*binomial(r+p-1-i, r-1), i=0..min(p, q)) end proc: T:=proc(n,k) options operator, arrow: 2^(k-1)*(k*L(n-k-1,3*n-k-4,n-2)-L(n-k-2,3*n-k-3,n-1))/(n-1) end proc: for n from 2 to 10 do seq(T(n,k),k=1..n-1) end do; # yields sequence in triangular form
  • Mathematica
    L[p_, q_, r_] := Sum[Binomial[q, i]*Binomial[r + p - 1 - i, r-1], {i, 0, Min[p, q]}]; t[n_, k_] := 2^(k-1)*(k*L[n - k - 1, 3*n - k - 4, n - 2] - L[n - k - 2, 3*n - k - 3, n-1])/(n-1); t[2, 1] = 1; Flatten[ Table[t[n, k], {n, 2, 10}, {k, 1, n-1}]] (* Jean-François Alcover, Oct 05 2011, after Maple *)
  • PARI
    L(p,q,r)={sum(i=0, min(p,q), binomial(q,i)*binomial(r+p-1-i,r-1))}
    T(n,k)={if(n<3, n==2&&k==1, 2^(k-1)*(k*L(n-k-1, 3*n-k-4, n-2) - L(n-k-2, 3*n-k-3, n-1))/(n-1))}
    for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017
    
  • PARI
    S(n)={my(g=x+x*serreverse((x-x^2)/(1+x)^3 + O(x^n))); Vec(g*(x - y*(g-x))/(g - 2*y*(g - x)))}
    my(v=S(10)); for(n=2, #v, my(p=v[n]); for(k=1, n-1, print1(polcoeff(p,k), ", ")); print) \\ Andrew Howroyd, Nov 17 2017

Formula

T(n,k) = 2^(k-1)*(k*L(n-k-1, 3*n-k-4, n-2) - L(n-k-2, 3*n-k-3, n-1))/(n-1) (n >= 2, 1 <= k <= n-1), where L(p,q,r) = [u^p](1+u)^q/(1-u)^r = Sum_{i=0..min(p,q)} binomial(q,i)*binomial(r+p-1-i, r-1).
G.f.: G(t,z) = g*(z - t*(g-z))/(g - 2*t*(g-z)), where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3*z*g + 2*z^2 = 0 (A007297).