cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143030 A sequence of asymptotic density zeta(4) - 1, where zeta is the Riemann zeta function.

Original entry on oeis.org

7, 23, 39, 50, 55, 71, 87, 103, 104, 119, 135, 151, 167, 183, 199, 212, 215, 231, 247, 263, 266, 279, 295, 311, 327, 343, 359, 364, 366, 374, 375, 391, 407, 423, 428, 439, 455, 471, 487, 503, 519, 535, 536, 551, 567, 583, 590, 599, 615, 631, 647, 663, 679
Offset: 1

Views

Author

William J. Keith, Jul 18 2008

Keywords

Comments

x is an element of this sequence if when m is the least natural number such that the least positive residue of x mod m! is no more than (m-2)!, floor(x/(m!)) and floor(x/(m*(m!))) are congruent to m-1 mod m, but floor(x/((m^2)*(m!))) is not. The sequence is made up of the residue classes 7 (mod 16); 50 and 104 (mod 162); 364, 366, 748, 750, 1132 and 1134 (mod 1536), etc. A set of such sequences with entries for each zeta(k) - 1 partitions the integers. See the linked paper for their construction.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{k = n - 1, m = 2, r}, While[{k, r} = QuotientRemainder[k, m]; r != 0, m++]; IntegerExponent[k + 1, m] + 2]; Select[Range[700], f[#] == 4 &] (* Amiram Eldar, Feb 15 2021 after Kevin Ryde at A161189 *)