cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143068 Expansion of phi(q) / phi(-q^6) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 2, 4, 0, 2, 4, 0, 4, 8, 0, 4, 10, 0, 8, 16, 0, 8, 20, 0, 14, 30, 0, 16, 36, 0, 24, 52, 0, 28, 64, 0, 42, 88, 0, 48, 108, 0, 68, 144, 0, 80, 176, 0, 108, 230, 0, 128, 280, 0, 170, 360, 0, 200, 436, 0, 260, 552, 0, 308, 666, 0, 392, 832, 0
Offset: 0

Views

Author

Michael Somos, Jul 21 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^4 + 2*q^6 + 4*q^7 + 2*q^9 + 4*q^10 + 4*q^12 + 8*q^13 + ...
		

Crossrefs

Cf. A143066.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q^6], {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^2, n))};

Formula

Expansion of eta(q^2)^5 * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6))^2 in powers of q.
Euler transform of period 12 sequence [ 2, -3, 2, -1, 2, -1, 2, -1, 2, -3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = (3/2)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A143066.
a(3*n + 2) = 0.
G.f.: ( Sum_{k in Z} x^k^2 ) / ( Sum_{k in Z} (-x^6)^k^2 ).