A143078 Triangle read by rows: row n (n >= 2) has length pi(n) (see A000720) and the k-th term gives the exponent of prime(k) in the prime factorization of n.
1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1
Offset: 2
Examples
Triangle begins {1}, {0, 1}, {2, 0}, {0, 0, 1}, {1, 1, 0}, (the 6th row, and 6 = prime(1)*prime(2)) {0, 0, 0, 1}, {3, 0, 0, 0}, {0, 2, 0, 0}, {1, 0, 1, 0}, ...
Programs
-
Mathematica
Clear[t, T, n, m, k]; t[n_, m_, k_] := If[PrimeQ[FactorInteger[ n][[m]][[1]]] && FactorInteger[n][[m]][[1]] == Prime[k], FactorInteger[n][[m]][[2]], 0]; T = Table[Apply[Plus, Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], { m, 1, Length[FactorInteger[n]]}]], {n, 1, 10}]; Flatten[%]
-
PARI
my(r(n)=vector(primepi(n),i,valuation(n,prime(i)))); concat(vector(20,n,r(n))) \\ [M. F. Hasler, Mar 10 2013]
Formula
t(n,m,k)=If[PrimeQ[FactorInteger[n][[m]][[1]]] && FactorInteger[n][[m]][[ 1]] == Prime[k], FactorInteger[n][[m]][[2]], 0]; T(n,m)=vector_sum overk of t(n,m,k).
Extensions
Edited by N. J. A. Sloane, Jan 12 2012
More terms from M. F. Hasler, Mar 10 2013
Comments