cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143078 Triangle read by rows: row n (n >= 2) has length pi(n) (see A000720) and the k-th term gives the exponent of prime(k) in the prime factorization of n.

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1
Offset: 2

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 14 2008

Keywords

Comments

If we suppress the 0's at the ends of the rows we get A067255. The number of 0's suppressed is A036234(n)-A061395(n)-1. - Jacques ALARDET, Jan 11 2012
Otherwise said, the number of suppressed (= trailing) 0's in row n is A000720(n)-A061395(n). - M. F. Hasler, Mar 10 2013

Examples

			Triangle begins
{1},
{0, 1},
{2, 0},
{0, 0, 1},
{1, 1, 0}, (the 6th row, and 6 = prime(1)*prime(2))
{0, 0, 0, 1},
{3, 0, 0, 0},
{0, 2, 0, 0},
{1, 0, 1, 0},
...
		

Crossrefs

Programs

  • Mathematica
    Clear[t, T, n, m, k]; t[n_, m_, k_] := If[PrimeQ[FactorInteger[ n][[m]][[1]]] && FactorInteger[n][[m]][[1]] == Prime[k], FactorInteger[n][[m]][[2]], 0]; T = Table[Apply[Plus, Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], { m, 1, Length[FactorInteger[n]]}]], {n, 1, 10}]; Flatten[%]
  • PARI
    my(r(n)=vector(primepi(n),i,valuation(n,prime(i)))); concat(vector(20,n,r(n))) \\ [M. F. Hasler, Mar 10 2013]

Formula

t(n,m,k)=If[PrimeQ[FactorInteger[n][[m]][[1]]] && FactorInteger[n][[m]][[ 1]] == Prime[k], FactorInteger[n][[m]][[2]], 0]; T(n,m)=vector_sum overk of t(n,m,k).

Extensions

Edited by N. J. A. Sloane, Jan 12 2012
More terms from M. F. Hasler, Mar 10 2013