A143141 Total number of all repeated partitions of the integer n and its parts down to parts equal to 1. Essentially first differences of A055887.
1, 2, 5, 14, 37, 101, 271, 733, 1976, 5334, 14390, 38833, 104779, 282734, 762903, 2058571, 5554692, 14988400, 40443620, 109130216, 294469216, 794574883, 2144024501, 5785283758, 15610599502, 42122535067, 113660462337, 306693333868, 827559549428, 2233028019698
Offset: 1
Keywords
Examples
n=1: [[1]] n=2: [[2], [1, 1]] n=3: [[3], [2, 1], [1, 1, 1]], [[2], [1, 1]] n=4 in more detail: [4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]], <- stage s=1, partition of 4 [[3], [2, 1], [1, 1, 1]], <- stage s=2 partitioning the first 3 of the 2nd partition [[2], [1, 1]], <- stage s=2 partitioning the first 2 of the 3rd partition [[2], [1, 1]], <- stage s=2 partitioning the second 2 of the 3rd partition [[2], [1, 1]] <- stage s=2 partitioning the first 2 of the 4th partition a(4) = 14 = 5 (from s=1)+9 (from s=2).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A055887 := proc(n) option remember ; if n = 0 then 1; else add(combinat[numbpart](k)*procname(n-k),k=1..n) ; fi; end: A143141 := proc(n) if n = 1 then 1; else A055887(n)-A055887(n-1) ; fi; end: seq(A143141(n),n=1..20) ;
-
Mathematica
b[n_] := b[n] = Sum[PartitionsP[k]*b[n-k], {k, 1, n}]; b[0]=1; A055887 = Table[b[n], {n, 0, 30}]; Join[{1}, Rest[Differences[A055887]]] (* Jean-François Alcover, Feb 05 2017 *)
Extensions
Edited and extended by R. J. Mathar, Aug 25 2008
Comments