A143158 Triangle read by rows, T(n,k) = Sum_{j=k..n} mu(j).
1, 0, -1, -1, -2, -1, -1, -2, -1, 0, -2, -3, -2, -1, -1, -1, -2, -1, 0, 0, 1, -2, -3, -2, -1, -1, 0, -1, -2, -3, -2, -1, -1, 0, -1, 0, -2, -3, -2, -1, -1, 0, -1, 0, 0, -1, -2, -1, 0, 0, 1, 0, 1, 1, 1, -2, -3, -2, -1, -1, 0, -1, 0, 0, 0, -1, -2, -3, -2, -1, -1, 0, -1, 0, 0, 0, -1, 0, -3, -4, -3, -2, -2, -1, -2, -1, -1, -1, -2, -1, -1, -2, -3, -2, -1
Offset: 1
Examples
First few rows of the triangle = 1; 0, -1; -1, -2, -1; -1, -2, -1, 0; -2, -3, -2, -1, -1; -2, -3, -2, -1, -1, 0, -1; -2, -3, -2, -1, -1, 0, -1, 0; -1, -2, -1, 0, 0, 1, 0, 1, 1, 1; ... For example, T(5,3) = (-2) = Sum(-1, 0, -1), since mu(n) = 1, -1, -1, 0, -1, ...
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
Programs
-
Haskell
import Data.List (tails) a143158 n k = a143158_tabl !! (n-1) !! (k-1) a143158_row n = a143158_tabl !! (n-1) a143158_tabl = map (map sum . init . tails) a054527_tabl -- Reinhard Zumkeller, Sep 04 2015
-
Mathematica
Table[Sum[MoebiusMu@ j, {j, k, n}], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Dec 17 2015 *)
-
PARI
T(n,k) = sum(j=k,n,moebius(j))
Formula
Extensions
47th term = T(10,2) corrected by Reinhard Zumkeller, Sep 04 2015
Comments