A143171 Partition number array, called M32(-1), related to A001497(n-1,m-1) = |S2(-1;n,m)| (generalized Stirling2 triangle).
1, 1, 1, 3, 3, 1, 15, 12, 3, 6, 1, 105, 75, 30, 30, 15, 10, 1, 945, 630, 225, 90, 225, 180, 15, 60, 45, 15, 1, 10395, 6615, 2205, 1575, 2205, 1575, 630, 315, 525, 630, 105, 105, 105, 21, 1, 135135, 83160, 26460, 17640, 7875, 26460, 17640, 12600, 3150, 2520, 5880, 6300
Offset: 1
Examples
a(4,3) = 3. The relevant partition of 4 is (2^2). The 3 unordered (0,2,0,0)-forests are composed of the following 2 rooted increasing unary trees 1--2,3--4; 1--3,2--4 and 1--4,2--3. The trees are unary because r=1 vertices are unary (1-ary) and for the leaves (r=0) the arity does not matter.
Links
- Wolfdieter Lang, First 10 rows of the array and more.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Crossrefs
Cf. A143173 M32(-2) array.
Formula
a(n,k) = (n!/Product_{j=1..n} e(n,k,j)!*j!^e(n,k,j)) * Product_{j=1..n} |S2(-1,j,1)|^e(n,k,j) = M3(n,k)*Product_{j=1..n} |S2(-1,j,1)|^e(n,k,j), with |S2(-1,n,1)| = A001147(n-1) = (2*n-3)(!^2) (2-factorials) for n >= 2 and 1 if n=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. Exponents 0 can be omitted due to 0!=1. M3(n,k) := A036040(n,k), k=1..p(n), p(n) := A000041(n).
Comments