A143211 Triangle read by rows, T(n,k) = Fibonacci(n)*Fibonacci(k).
1, 1, 1, 2, 2, 4, 3, 3, 6, 9, 5, 5, 10, 15, 25, 8, 8, 16, 24, 40, 64, 13, 13, 26, 39, 65, 104, 169, 21, 21, 42, 63, 105, 168, 273, 441, 34, 34, 68, 102, 170, 272, 442, 714, 1156, 55, 55, 110, 165, 275, 440, 715, 1155, 1870, 3025, 89, 89, 178, 267, 445, 712, 1157, 1869
Offset: 1
Examples
First few rows of the triangle: 1; 1, 1; 2, 2, 4; 3, 3, 6, 9; 5, 5, 10, 15, 25; 8, 8, 16, 24, 40, 64; 13, 13, 26, 39, 65, 104, 169; 21, 21, 42, 63, 105, 168, 273, 441; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
F:=Fibonacci; [F(n)*F(k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 20 2024
-
Mathematica
With[{F=Fibonacci}, Table[F[k]*F[n], {n,12}, {k,n}]]//Flatten (* G. C. Greubel, Jul 20 2024 *)
-
SageMath
def A143211(n,k): return fibonacci(n)*fibonacci(k) flatten([[A143211(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 20 2024
Formula
T(n, k) = Fibonacci(n)*Fibonacci(k).
T(n, 1) = A000045(n).
T(n, n) = A007598(n).
Sum_{k=1..n} T(n, k) = A143212(n).
From G. C. Greubel, Jul 20 2024: (Start)
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*Fibonacci(n)*(Fibonacci(n-1) - (-1)^n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A024458(n). (End)