A143226 Numbers n such that there are more primes between n and 2n than between n^2 and (n+1)^2.
42, 55, 56, 58, 69, 77, 80, 119, 136, 137, 143, 145, 149, 156, 174, 177, 178, 188, 219, 225, 232, 247, 253, 254, 257, 261, 263, 297, 306, 310, 325, 327, 331, 335, 339, 341, 344, 356, 379, 395, 402, 410, 418, 421, 425, 433, 451, 485, 500
Offset: 1
Keywords
Examples
There are 10 primes between 42 and 2*42, but only 9 primes between 42^2 and 43^2, so 42 is a member.
References
- M. Aigner and C. M. Ziegler, Proofs from The Book, Chapter 2, Springer, NY, 2001.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1989, p. 19.
Links
- T. D. Noe, Table of n, a(n) for n = 1..413
- T. Hashimoto, On a certain relation between Legendre's conjecture and Bertrand's postulate, arXiv:0807.3690 [math.GM], 2008.
- M. Hassani, Counting primes in the interval (n^2,(n+1)^2), arXiv:math/0607096 [math.NT], 2006.
- J. Pintz, Landau's problems on primes
- S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
- J. Sondow, Ramanujan Prime in MathWorld
- J. Sondow and E. W. Weisstein, Bertrand's Postulate in MathWorld
- E. W. Weisstein, Legendre's Conjecture in MathWorld
Programs
-
Mathematica
L={}; Do[If[PrimePi[(n+1)^2]-PrimePi[n^2] < PrimePi[2n]-PrimePi[n], L=Append[L,n]], {n,0,500}]; L
Formula
A143223(n) < 0.
Comments