cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143227 (Number of primes between n and 2n) - (number of primes between n^2 and (n+1)^2), if > 0.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 2, 2, 6, 3, 3, 1, 1, 1, 2, 1, 1, 1, 1, 6, 3, 8, 3, 2, 3, 2, 3, 1, 1, 4, 3, 10, 2, 1, 1, 2, 3, 1, 3, 4, 2, 2, 9, 7, 2, 2, 4, 3, 3, 1, 2, 3, 5, 1, 2, 3, 2, 11, 3, 1, 2, 4, 7, 1, 1, 1, 1, 1, 5, 1, 2, 3, 3, 4, 2, 2, 9, 5, 1, 4, 2, 2
Offset: 1

Views

Author

Jonathan Sondow, Aug 02 2008

Keywords

Comments

If the sequence is bounded (e.g., if it is finite), then Legendre's conjecture is true: there is always a prime between n^2 and (n+1)^2, at least for all sufficiently large n. This follows from the strong form of Bertrand's postulate proved by Ramanujan (see A104272 Ramanujan primes).

Examples

			The first positive value of ((pi(2n) - pi(n)) - (pi((n+1)^2) - pi(n^2))) is 1 (at n = 42), the 2nd is 2 (at n = 55) and the 3rd is 1 (at n = 56), so a(1) = 1, a(2) = 2, a(3) = 1.
		

References

  • M. Aigner and C. M. Ziegler, Proofs from The Book, Chapter 2, Springer, NY, 2001.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1989, p. 19.
  • S. Ramanujan, Collected Papers of Srinivasa Ramanujan (G. H. Hardy, S. Aiyar, P. Venkatesvara and B. M. Wilson, eds.), Amer. Math. Soc., Providence, 2000, pp. 208-209.

Crossrefs

Cf. A000720, A014085, A060715, A104272, A143223, A143224, A143225, A143226 = corresponding values of n.

Programs

  • Mathematica
    L={}; Do[ With[ {d=(PrimePi[2n]-PrimePi[n])-(PrimePi[(n+1)^2]-PrimePi[n^2])}, If[d>0, L=Append[L,d]]], {n,0,1000}]; L
    Select[Table[(PrimePi[2n]-PrimePi[n])-(PrimePi[(n+1)^2]-PrimePi[n^2]),{n,1000}],#>0&] (* Harvey P. Dale, Jun 19 2019 *)

Formula

a(n) = |A143223(A143226(n))|.