A143230 Triangle read by rows, A130207 * A000012 * A130207.
1, 1, 1, 2, 2, 4, 2, 2, 4, 4, 4, 4, 8, 8, 16, 2, 2, 4, 4, 8, 4, 6, 6, 12, 12, 24, 12, 36, 4, 4, 8, 8, 16, 8, 24, 16, 6, 6, 12, 12, 24, 12, 36, 24, 36, 4, 4, 8, 8, 16, 8, 24, 16, 24, 16, 10, 10, 20, 20, 40, 20, 60, 40, 60, 40, 100, 4, 4, 8, 8, 16, 8, 24, 16, 24, 16, 40, 16
Offset: 1
Examples
First few rows of the triangle: 1; 1, 1; 2, 2, 4; 2, 2, 4, 4; 4, 4, 8, 8, 16; 2, 2, 4, 4, 8, 4; 6, 6, 12, 12, 24, 12, 36; 4, 4, 8, 8, 16, 8, 24, 16; 6, 6, 12, 12, 24, 12, 36, 24, 36; ... T(7,5) = 24 = phi(7) * phi(5) = 6 * 4.
Links
- Nathaniel Johnston, Rows 1..100, flattened
Programs
-
Magma
A143230:= func< n,k | EulerPhi(n)*EulerPhi(k) >; [A143230(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 10 2024
-
Maple
with(numtheory): T := proc(n,k) return phi(n)*phi(k): end: seq(seq(T(n,k),k=1..n),n=1..12); # Nathaniel Johnston, Jun 26 2011
-
Mathematica
A143230[n_, k_]:= EulerPhi[n]*EulerPhi[k]; Table[A143230[n, k], {n, 12}, {k, n}] // Flatten (* G. C. Greubel, Sep 10 2024 *)
-
SageMath
def A143230(n,k): return euler_phi(n)*euler_phi(k) flatten([[A143230(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Sep 10 2024
Comments