cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108461 Table read by antidiagonals: T(n,k) = number of factorizations of (n,k) into pairs (i,j) with i,j>=1, not both 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 4, 2, 4, 1, 2, 2, 4, 4, 2, 2, 1, 5, 2, 9, 2, 5, 1, 3, 2, 5, 4, 4, 5, 2, 3, 2, 7, 2, 11, 2, 11, 2, 7, 2, 2, 4, 7, 4, 5, 5, 4, 7, 4, 2, 1, 5, 4, 16, 2, 15, 2, 16, 4, 5, 1, 4, 2, 5, 9, 7, 5, 5, 7, 9, 5, 2, 4, 1, 11, 2, 11, 4, 21, 2, 21, 4, 11, 2, 11, 1, 2, 2, 11, 4, 5, 11, 7
Offset: 1

Views

Author

Christian G. Bower, Jun 03 2005

Keywords

Comments

The rule of building products is (a,b)*(x,y) = (a*x,b*y).
The number of divisors of (n,k) is A143235(n,k)-1, where the subtraction of 1 means that the unit (1,1) is not admitted here. - R. J. Mathar, Nov 30 2017

Examples

			1 1 1 2 1 ...
1 2 2 4 2 ...
1 2 2 4 2 ...
2 4 4 9 4 ...
1 2 2 4 2 ...
(6,2)=(6,1)*(1,2)=(3,2)*(2,1)=(3,1)*(2,2)=(1,2)*(6,1), so a(6,2)=5.
		

Crossrefs

Columns 1-3: A001055, A057567, A057567.
Main diagonal: A108462.

Formula

Dirichlet g.f.: A(s, t) = exp(B(s, t)/1 + B(2*s, 2*t)/2 + B(3*s, 3*t)/3 + ...) where B(s, t) = zeta(s)*zeta(t)-1.

A143236 a(n) = A000005(n) * A006218(n).

Original entry on oeis.org

1, 6, 10, 24, 20, 56, 32, 80, 69, 108, 58, 210, 74, 164, 180, 250, 104, 348, 120, 396, 280, 296, 152, 672, 261, 364, 380, 606, 206, 888, 226, 714, 492, 508, 524, 1260, 284, 584, 600, 1264, 320, 1344, 340, 1056, 1092, 744, 376, 1980, 603, 1242, 844, 1302, 438, 1816, 924
Offset: 1

Views

Author

Gary W. Adamson, Aug 01 2008

Keywords

Examples

			a(4) = 24 = A000005(4) * A006218(4) = 3*8.
a(4) = 24 = sum of row 4 terms of triangle A143235: (3 + 6 + 6 + 9).
		

Crossrefs

Row sums of triangle A143235.

Programs

  • Magma
    A143236:= func< n | NumberOfDivisors(n)*(&+[Floor(n/k): k in [1..n]]) >;
    [A143236(n): n in [1..100] ]; // G. C. Greubel, Sep 12 2024
    
  • Mathematica
    A143236[n_]:= DivisorSigma[0,n]*Sum[Floor[n/k], {k,n}];
    Table[A143236[n], {n,100}] (* G. C. Greubel, Sep 12 2024 *)
  • PARI
    A006218(n)=sum(k=1, sqrtint(n), n\k)*2-sqrtint(n)^2
    a(n)=A006218(n)*numdiv(n) \\ Charles R Greathouse IV, Nov 03 2021
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A143236(n): return (-(s:=isqrt(n))**2+(sum(n//k for k in range(1,s+1))<<1))*divisor_count(n) # Chai Wah Wu, Oct 23 2023
    
  • SageMath
    def A143236(n): return sigma(n,0)*sum(int(n//k) for k in range(1,n+1))
    [A143236(n) for n in range(1,101)] # G. C. Greubel, Sep 12 2024

Formula

a(n) = Sum_{k=1..n} A143235(n,k).

Extensions

More terms from N. J. A. Sloane, Oct 19 2008
Showing 1-2 of 2 results.